
In the Money? Low-Leverage in the time of Option
Betting

Edna Lopez Avila ∗

ABSTRACT

I examine the role of In-The-Money (ITM) options, an underexplored yet econom-
ically significant segment of the options market. Using one of the most comprehensive
equity options databases, I find ITM options capture a larger share of dollar volume.
This volume is particularly concentrated in large-cap stocks, short-maturity contracts,
and significantly correlated to retail investor activity on social media. Despite their
low leverage, ITM options attract investors seeking higher probabilities of payoffs and
consistent, smaller returns compared to lottery-like Out-of-the-Money options. How-
ever, ITM options investors often underperform by trading during periods of high stock
volatility and elevated retail attention in social media, deviating from a model’s optimal
short-term strategy.
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1. Introduction

What are the motives of investors to trade in equity options? Options appeal to investors

primarily for their leverage benefits. Black (1975) argues that leverage is the key variable

considered by informed investors when choosing the options market over the stock market.

Options leverage allow investors to have larger positions in the underlying asset with less

capital, amplifying potential returns compared to the direct ownership of the stock. High-

leverage options not only offer higher expected returns (Coval and Shumway, 2001), but

also provide opportunities for hedging (Goldstein, Li, and Yang, 2014) and exhibit lottery-

like payoffs, which attract investors with gambling preferences (Boyer and Vorkink, 2014).

Consequently, Out-of-The-Money (OTM) options, which provide the highest leverage, have

taken the focus of much of the academic research.

In contrast, In-The-Money (ITM) options, which offer the lowest leverage, have received

relatively less attention in the literature. This paper addresses this gap by presenting sev-

eral stylized facts that underscore the economic significance of ITM options and offer new

insights into the motives driving investors’ decisions to trade options beyond the appeal

of high leverage. I explore both the economic and behavioral factors influencing investor

preferences for these low-leverage instruments, particularly their growing attraction to retail

investors. Despite the lower leverage, ITM options attract retail investors due to their per-

ceived higher probability of payoff and the potential for consistent, albeit smaller, returns.

By examining ITM options, this paper enhances our understanding of retail trading behavior

and performance in the options market, addressing key concerns about the underperformance

and gambling tendencies often associated with retail traders in options.

For this analysis, I constructed one of the most comprehensive open-close option databases.

It covers approximately 70% of the entire equity options market, and it allows for precise

identification of the direction of trading volumes and the type of investor involved in each

option contract. To my knowledge, this dataset stands as one of the most comprehensive
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and exhaustive Open-Close option database utilized in academic research. While previ-

ous studies typically relied on open-close option data from only one or two exchanges, my

analysis integrates data from six exchanges —CBOE, CBOE-C2, ISE, PHLX, NOM, and

GEMX. I focus on options traded by “end users”, which includes “professional customers”,

“proprietary trading firms”, and “customers” classification. I further refine my analysis by

conditioning on trade size within the “customers” category, paying particular attention to

“small trades” involving fewer than 100 contracts per trade, which are referred to as “small

customers” throughout the paper. This granular approach offers deeper insights into the

trading behaviors of distinct market participants.

Among the stylized facts, I observe that while OTM options have the highest trading vol-

umes, ITM options capture a significantly larger share of the dollar trading volume. Despite

their lower trade frequency, ITM options contribute significantly more in dollar terms to the

overall options market, highlighting their economic significance. This pattern is particularly

pronounced in options traded by “small customers”. On average, ITM options account for

approximately 40% of the total dollar volume traded by small customers in equity options,

compared to 35% for OTM options and 25% for At-the-Money (ATM) options. By contrast,

ITM options account for only 33% of the dollar volume of option trades made by profession-

als and firms. The high dollar volume of ITM options among small customers is primarily

driven by call options, particularly those with short maturities of less than one week. Since

2018, the dollar volume of ITM call options with maturities under seven days has surged,

surpassing that of longer-term contracts, including those with maturities of 7 to 30 days,

31 to 90 days, and over 91 days. For small customers trading OTM options, however, con-

tracts with maturities longer than 91 days dominate in dollar volume across all maturity

buckets. When examining the cross-sectional variation in ITM option dollar volumes across

underlying stocks, the concentration is evident in large-cap stocks, particularly in the tech-

nology sector. A comparison of ITM and OTM call options for the same underlying stocks
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shows that the top 25 stocks with the largest average dollar volume difference favoring ITM

options are mostly in the highest market capitalization quantile. In contrast, stocks where

OTM call options dominate are generally smaller-cap, higher-risk names, including meme

stocks like GameStop (GME) and AMC. This highlights the distinct role ITM options play

in the strategies of small customers, particularly in large-cap stocks, while OTM options

remain popular for speculative trades in riskier, smaller-cap stocks.

While the increase in ITM options dollar volume is largely driven by trades from small

customers, and my findings align with broader studies on retail investor behavior in options

trading1, I cannot definitively attribute the recent popularity of ITM options to retail in-

vestors. As noted by Bogousslavsky and Muravyev (2024), the “customer” category in the

open-close option data may also include other participants besides retail traders, such as

professional hedge funds. To address this limitation and gain a deeper understanding of the

relationship between options trading and retail investor behavior, I incorporate data pro-

duced by retail investors in the social media platform Stocktwits. Although previous studies

have explored retail trading patterns on StockTwits, this paper is, to my knowledge, the first

to specifically examine its role in retail options trading. StockTwits, the largest investor-

focused social media platform, averages more than one million monthly posts covering most

stocks. This extensive dataset allows for a deeper exploration of retail investor behavior,

helping to clarify the drivers behind the recent surge in ITM options trading.

When retail investor attention to a specific stock increases on StockTwits, I observe a

significant increase in the options dollar volume for that stock, particularly among small

customers. Notably, the dollar volume of ITM options, especially call options, sees a more

pronounced rise compared to OTM options. This effect is particularly pronounced for ITM

call options with short maturities, particularly in cases where the underlying stocks have

1Bryzgalova, Pavlova, and Sikorskaya (2022) found that retail investors favor call options over puts, with
50% of retail trades involving short-term options expiring within a week. Bogousslavsky and Muravyev
(2024) noted a decrease in the median maturity of retail options, falling from four days in 2020 to just one
day by 2022, with retail trading heavily focused on high-priced technology stocks.
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larger market capitalizations. Importantly, this relationship holds even after controlling

for past stock returns, stock volatility, and abnormal news volume from traditional news

sources. In contrast, this increase is not observed in options traded by professionals and

firms. Moreover, I show that when retail attention is driven by posts containing keywords

related to options trading, the rise in ITM call option dollar volume for small customers

becomes even more pronounced.

Overall, my findings suggest that ITM call options play a crucial role in retail investors’

trading activities in the options market. Although retail investors are commonly associated

with favoring OTM options for their lottery-like payoffs and positive skewness (Filippou,

Garcia-Ares, and Zapatero (2018), Han and Kumar (2013)), the evidence drawn from Stock-

twits posts reveals a distinct motivation when it comes to ITM options. These unsophisti-

cated investors are attracted toward ITM options, driven by the perceived higher likelihood of

payoff. OTM call options, though cheaper and capable of delivering higher expected returns

due to their skewed payoff structure, they have lower probability of exercise. This makes

ITM options more attractive to investors seeking consistent, albeit smaller returns. Indeed,

I find evidence of this perception when I analyze the distribution of average daily returns

for call options with less than seven days to maturity. OTM options exhibit a left-skewed

distribution with fatter tails. In contrast, ITM options show a more symmetric return dis-

tribution with lower kurtosis. Interestingly, for options with longer maturities (more than 90

days), the difference in the daily average return distribution between ITM and OTM options

is less pronounced, suggesting that short-term options highlight the more distinct trading

motives between these two types of contracts.

The growing interest in ITM options, motivated by the perceived higher likelihood of

consistent returns, inevitably raises a crucial question: how do these investors actually per-

form when trading ITM options? To explore this, I examine both dollar performance and

daily percentage returns, calculated using net dollar open interest for each option contract
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and daily option prices. The results reveal a significant negative relationship between the

daily average returns of options by stock and the corresponding abnormal retail investor

activity on StockTwits. This relationship persists across all option types but is particularly

more pronounced for ITM call options compared to OTM call options. in fact, ITM call

options underperform the most during periods of heightened retail attention.

To explain this underperformance, I use a theoretical framework based on the Kelly Cri-

terion, a well-established approach for determining the optimal size of investments or bets

to maximize the long-term growth of wealth. Interestingly, I find evidence that this model

is been discussed by retail investors on Stocktwits where investors actively discuss strate-

gies related to position sizing. Adapting this framework to the options market, the model

predicts an optimal allocation for short-maturity ITM options, particularly in low-volatility

stocks. However, while ITM investors empirically favor short-maturity options, they often

fail to account for events marked by heightened stock volatility. This miscalculation con-

tributes to their underperformance, highlighting the sensitivity of ITM options to volatility

fluctuations, particularly during periods of increased retail participation. This simple model

offers interesting avenues for future research, especially in understanding the preferences of

gambling-motivated investors who trade options for reasons beyond their lottery-like pay-

offs. It also prompts further exploration into the role of social media in influencing the

performance of equity options, particularly those favored by retail investors.

1.1. Related literature and contributions

My research contributes to several areas within the existing literature. It adds to the un-

derstanding of why investors are drawn to trading options and the distinctive features that

options offer. Sanghvi, Sharma, and Chandani (2024) provide a comprehensive review of

literature elucidating the motives of individual investors to engage in equity derivatives trad-

ing, categorizing these motives as “hedging and speculation” (Lakonishok, Lee, Pearson, and
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Poteshman (2007), Goldstein, Li, and Yang (2014), “returns versus risk” (Bernard, Boyle,

and Gornall, 2011), and “gambling” (Bauer, Cosemans, and Eichholtz, 2009). My paper

aligns with the “gambling” motives. Specifically, it extends the literature that has shifted

focus toward the asset pricing implications of models that depart from the conventional rep-

resentative agent/expected utility framework to explain individual trading behavior in the

options market. For instance, Boyer and Vorkink (2014) argue that the lottery-like features

of options, implicit in their leverage and nonlinear payoff structures, appeal to investors

with a preference for skewness. Additionally, recent research by Filippou, Garcia-Ares, and

Zapatero (2018) suggests that OTM options serve as the primary securities with lottery

characteristics for skewness-seeking investors, particularly among retail investors. However,

my paper introduces another dimension to the motives beyond high leverage. ITM options

characterized by their low leverage, attract investors due to their perceived higher probabil-

ity of payoff and consistent smaller returns, thereby expanding the conversation around the

motivations behind options trading.

Second, this paper contributes to the growing literature on retail options trading. Re-

cent studies, such as Bryzgalova, Pavlova, and Sikorskaya (2022) and Bogousslavsky and

Muravyev (2024), show that retail trading concentrates in short-maturity call options, par-

ticularly in large-cap and meme stocks. My findings extend this by highlighting leverage’s

crucial role in shaping retail strategies. ITM options, with lower leverage, dominate in large-

cap stocks, while OTM options, offering higher leverage and lottery-like payoffs, are popular

in smaller-cap, riskier stocks. These studies, along with de Silva, Smith, and So (2023), find

limited evidence of leverage or skewness-seeking preferences. My paper addresses this by

highlighting the growing interest in ITM options and its correlation with retail attention in

social media.

Third, this paper extends the literature on social media’s influence in financial markets.

Cookson, Mullins, and Niessner (2024) offers a detailed review of the role social media plays
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in shaping retail investor behavior. Studies like Cookson and Niessner (2020), Cookson, Fos,

and Niessner (2021), and Cookson, Lu, Mullins, and Niessner (2022) focus on Stocktwits and

its impact on retail trading in equity markets. However, this paper takes a novel approach by

analyzing Stocktwits data within the context of retail options trading, providing new insights

into how social media activity correlates with retail trading strategies and performance in

the options market.

Fourth, my research contributes to the growing literature on retail trading attention.

Studies such as Barber and Odean (2000) and Barber, Lin, and Odean (2023) have shown that

retail investors tend to be uninformed and often make systematic mistakes when selecting

stocks, frequently chasing attention-grabbing stocks without regard to fundamentals. My

findings align with this body of work, revealing that retail investors are similarly prone to

suboptimal trading behaviors in the options market. Specifically, I find that retail investors

exhibit heightened activity in ITM options during periods of increased attention on social

media, but this often coincides with underperformance due to increased stock volatility.

Lastly, my paper also extends the literature on money management by exploring the

Kelly Criterion (Kelly, 1956) as an alternative approach to Markowitz’s framework. Initially

utilized by Edward Thorp for blackjack betting in Las Vegas casinos (Thorp, 1966), the

Kelly Criterion was later adapted as a portfolio optimization method (Thorp, 1975). Subse-

quently, numerous researchers have scrutinized the Kelly Criterion, highlighting its benefits

and drawbacks, and it has been adopted by hedge fund managers in their asset allocation

strategies. Specifically, my research aligns with recent papers that have studied the applica-

tion of the Kelly Criterion in option portfolios, like Carta and Conversano (2020), and Wu

and Hung (2018).
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2. Data and Main Variables

2.1. Option data and variables

To construct the primary dataset, I aggregated daily Open-Close records of option trading

volume from January 2014 to December 2022 across the following eight exchanges:

1. CBOE: Open-Close Chicago Board Options Exchange C1 and C2 exchanges: CBOE,

CBOE-C2, CBOE-BZX, CBOE-EDGX.

2. NOTO: Nasdaq Options Trade Outline.

3. PHOTO: PHLX Options Trade Outline.

4. ISE: International Securities Exchange Open/Close Trade Profile.

5. GEMX: GEMX Open/Close Trade Profile.

To my knowledge, this dataset is one of the most comprehensive and granular Open-Close

datasets used in academic research on options markets, as it covers approximately 70% of

the total options trading volume as reported by OptionMetrics. Figure 3 provides a detailed

breakdown of data coverage across the exchanges, as each has varying inclusion periods in

the analysis. The dataset covers all the option contracts of stocks with share code 10 or 11

from the Center for Research in Security Prices (CRSP) at the contract-day level.

Aggregating data from all 8 exchanges for each option contract results in a big and

comprehensive database. Overall, the database covers 3,000 unique stocks, 3 million option

contracts, and up to 200 million observations, on average per year, as detailed in Table 1.

Each option contract recorded on OptionMetrics of all stocks considered in this analysis is

merged with its corresponding open-close volume data across all exchanges. The variables

of Optionmetrics include the daily option price, forward price, implied volatility, and delta.

This linkage is established by matching key parameters, including the ticker symbol, root,
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trade date, expiration date, option type (put or call), strike price, and settlement time (AM

or PM). This matching process relies on the SecId-PERMNO crosswalk provided by WRDS.

Each option contract is identified as a put or a call, by its strike price, by time of execution,

and by time of expiration. Furthermore, each option is accompanied by its directional trading

data, encompassing both its trading volume and the number of trades recorded at the close

of each trading day, divided into four specific categories: opening buys, opening sells, closing

buys, and closing sells. Opening buys refer to new trades that initiate a long position on

the underlying, and closing buys to trades that close an existing short position. Conversely,

opening sells refer to new trades that initiate a short position on the underlying, and closing

sells to trades that close an existing long position.

The option volume is also categorized according to which investor classes initiate the

trades: customers, professional customers, market makers, proprietary trading firms, and

broker-dealers. These four types of investors collectively constitute the trading data for all

non-market makers. Precisely, a “Professional Customer” is defined as an individual or entity

that (i) is not a broker or dealer in securities, and (ii) places more than 390 orders in listed

options per day on average during a calendar month for its own beneficial accounts. On the

other hand, “Customers” also engage in trading on their own accounts, but their trading

activity does not reach the threshold required to qualify them as “Professional Customers”.

Furthermore, the trading activity of “Customers” is broken down into trade size buckets:

less than 100 contracts, 100-199 contracts, and greater than 199 contracts. This granular

breakdown of trade size is an important feature for my analysis, as my primary variable

of interest will be “Customers” trades with the smallest size, i.e., less than 100 contracts,

referred to as ”small customers” throughout the paper.

I calculate the Trade Volume and Dollar Volume for every option contract by aggregating

all opening buys, opening sells, closing buys, and closing sells. Unlike Trade Volume, which

measures the number of contracts traded, Dollar Volume reflects the value of investor capital
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committed to the options market, denominated in US dollars. While Trade Volume is the

simplest and most commonly used metric in the literature, Dollar Volume, which indirectly

accounts for leverage using the price of the option contract, provides a more comprehensive

representation of the wealth invested in the options market. Trade Volume V olume(j, t) and

Dollar Volume DollarV olume(i, j, t) of option contract i, stock j, at day t, are calculated as

follows:

V olume(i, j, t) = OpenBuyi,j,t + CloseBuyi,j,t +OpenSelli,j,t + CloseSelli,j,t

DollarV olume(i, j, t) = OptionPricei,j,t · V olume(i, j, t) (1)

Where OpenBuy,CloseBuy,OpenSell, CloseSell represents the trading volume in number

of contracts of option contract i, stock j, at day t.

To account for the direction of each option trade, it is important to note that OpenBuy

and CloseBuy account for buy volume, while OpenSell and CloseSell account for sell vol-

ume. Therefore to compute the buy-minus-sell volume, I calculate the Order Imbalance

OIB(i, j, t) of option contract i, stock j, at day t, as follows:

OIB(i, j, t) = OpenBuyi,j,t + CloseBuyi,j,t −OpenSelli,j,t − CloseSelli,j,t

In dollar terms the Dollar Order Imbalance is calculated:

DollarOIB(i, j, t) = Pricei,j,t ·OIB(i, j, t) (2)

Where Pricei,j,t is the price of the option contract i, of stock j, at day t. Order Imbalance

measures the directional volume of options contracts traded on a given day but does not

account for positions from previously traded contracts that remain open or unexercised. To

address this, I calculate the Net Open Interest (NOI) using Order Imbalance, which captures

the current outstanding net exposure for each contract as follows:

NOI(i, j, t) =
∑
s=0

OIB(i, j, t− s) (3)
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Where s is the day of inception of the option contract i, of stock j, on day t. The calculation

of NOI(i, j, t) is complex as it requires accumulating the daily order imbalance since the

inception of the option contract, considering all trades from all exchanges where the option

contract is traded, and using balanced panel data. Given that my database covers approxi-

mately 70% of the option trading volume exchanges, it serves as a reliable proxy for the net

open interest of each option contract.

This paper examines the performance of every option contract using the previously de-

fined Net Open Interest, NOI(i, j, t). Performance is calculated both in dollar terms and as

a percentage return. Specifically, the dollar performance of each option contract is calculated

as follows:

$PerfNOIi,j,t:t+1 = NOIi,j,t × 100× (Pricei,j,t+1 − Pricei,j,t)

While the performance in percentage of every option contract is computed:

%PerfNOIj,t:t+1 = DirectionNOIi,j,t ×
Pricej,t+1 − Pricej,t

Pricej,t

Where Pricei,j,t and Pricei,j,t+1 are the prices of option contract i, of stock j on day t and

t+1, respectively, and DirectionNOIi,j,t is the sign of the net open interest of option contract

i, of stock j on day t. Using the net open interest to calculate the performance of the option

contract, allows me to consider all contracts that are open at every time t and not only the

contracts that are traded that day. As a result, both PerfNOIi,j,t:t+1 and %PerfNOIi,j,t:t+1

are robust measures of peformance.

While I calculate all variables for each option contract i, for my main analysis I aggregate

these variables at the stock-day level. This aggregation considers different payoff types (Call

or Put), time to maturity (τ), types of moneyness (F/K), and type of investor (Small

Customers, Professionals, and Firms). Regarding the maturity of the options, I consider

four different buckets: less than 7 days, 8 to 30 days, 30 to 90 days, and over 91 days.

Moneyness is classified into three types: In-the-Money (ITM), Out-of-the-Money (OTM),
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and At-the-Money (ATM). To determine the level of moneyness of an option, I calculate the

ratio (F/K) between the Forward Price of the Stock (F) and the Strike Price of the Option

Contract (K). For call options, if F/K < 0.975, the contract is considered to be OTM, while

if F/K > 1.025, it is ITM. Conversely, for put options, if F/K < 0.975, the contract is ITM,

and if F/K > 1.025, it is OTM.

2.2. Social Media, News and Stock data

For my analysis, I obtained data from one of the most popular social media platforms among

retail investors: Stocktwits, from January 2014 to December 2022. This data was accessed

via RapidAPI. Similar to Twitter, users can post on Stocktwtis “tweets” or messages on the

platform about stocks adding a $ Cashtag symbol followed by the stock ticker symbol. I

retrieve all posts whose $ Cashtag symbolx are tickers of stocks with share code 10 or 11

from CRSP. I aggregate the number of posts related to each ticker on a daily basis. Figure

5 in Panel A shows the aggregate monthly number of posts that include at least one ticker

from my sample.

Additionally, I consider firm-level news data from RavenPack for the same stock sample,

aggregating the number of news articles by stock on a daily basis. From CRSP, I also

obtained daily stock returns and market capitalization for every firm. Finally, I merged

the StockTwits data, RavenPack news, and stock data with the options data using ticker

symbols and dates.

3. Stylized facts of ITM options

OTM equity options have been the focus of much of academic research. In contrast, ITM

options have received less attention, given they offer the lowest leverage. In this section, I

present several stylized facts that underscore the economic significance of ITM options and

offer new insights into the motives driving investors’ decisions to trade options beyond the
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appeal of high leverage.

In summary, I find that ITM options account for a substantial share of dollar trading

volume, suggesting that a significant portion of overall market wealth is allocated to these

instruments. This pattern is particularly pronounced in trades by small customers, primarily

in short-maturity call options on large-cap stocks. I explore these trends further, contrasting

the behaviors of different investor groups, such as professionals and firms.

Fact 1: The average dollar volume of ITM options exceeds that of OTM options for trades

made by small customers. This trend is less pronounced for options traded by professionals

and firms.

I begin by calculating the trade volume and dollar volume for all option contracts, ag-

gregating the data by stock, date, and moneyness. Moneyness is defined as the ratio F/K

rounded to two decimals, where F is the forward price of the underlying stock, and K is

the option’s strike price. In Figure 2, Panel A shows the average trade volume (number of

trades), while Panel B displays the average dollar volume, both by different level of money-

ness for options traded by small customers.

It is evident that OTM options dominate in terms of trade volume for both call and

put options. However, this trend reverses when dollar volume is considered. On an average

day, for an average stock, ITM options surpass other types, particularly OTM options, in

dollar volume, reflecting a greater level of investment in ITM options. A similar, though

less pronounced, trend is observed for options traded by professionals and firms, as shown

in Figure AA1.

I further aggregate the dollar volume, this time by type of moneyness instead, and report

the summary statistics on Table 2 for call (Panel A) and put (Panel B) options by investor.

For call options, if F/K < 0.975, the contract is considered to be OTM, while if F/K >

1.025, it is ITM. Conversely, for put options, if F/K < 0.975, the contract is ITM, and if

F/K > 1.025, it is OTM. For an average day and for the average stock, the dollar volume
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of ITM options traded by small customers surpasses that of OTM and ATM options for

both call and put options. Specifically, in Panel A for call options, aggregating the dollar

volume across the entire sample period shows that ITM options account for 42% of the

total, compared to 29% for OTM options and 29% for ATM options. This trend is reversed

for professionals and firms, where the average dollar volume of ITM call options is lower

than that of OTM and ATM call options, representing only 21% and 23% of the total

dollar volume, respectively. A similar trend is observed for put options in Panel B, though

the average dollar volume of ITM call options is significantly higher than that of ITM put

options.

Overall, these results highlight the strong preference of small customers for investing in

ITM options, particularly for call options, though to a lesser extent for puts. ITM options

account for a significant portion of the total dollar volume traded by small customers. In

contrast, professionals and firms tend to favor OTM and ATM options, revealing distinct

trading patterns between different type of investors.

Fact 2: The dollar volume of ITM options traded by Small Customers is higher for

maturities of less than 7 days.

Next, I examine the distribution of dollar volume in equity options across different matu-

rities. I calculate the daily average dollar volume for options within five maturity categories:

0 to 7 days, 7 to 30 days, 30 to 90 days, and over 90 days. The results are presented in Table

13, with Panel A showing data for call options and Panel B for put options. Panels C and

D illustrate the percentage distribution of the aggregate dollar volume through the entire

period of analysis.

For ITM options, the dollar volume is predominantly higher in options with maturities

of less than 7 days. Notably, the daily average dollar volume for short-term call options is

higher than that for put options when maturities are less than 7 days. Approximately 46%
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of the stock-daily average dollar volume for ITM call options and 48% for ITM put options is

concentrated in contracts with less than a week to maturity. This pattern contrasts with the

behavior of professionals and firms, who direct most of their dollar trading toward options

with maturities longer than 90 days.

Fact 3: The dollar volume of ITM call options traded by Small Customers is predomi-

nantly concentrated in large-cap technology stocks.

I then analyze the distribution of dollar volume in equity options based on the size of

the underlying stocks. Table 14 presents a breakdown across NYSE market capitalization

quantiles. The data, shown in Panel A for call options and Panel B for put options, indicate

that the average dollar volume is higher for options on stocks with larger market capital-

izations, particularly those in the highest quantile. Panels C and D further demonstrate

that for large-cap stocks, the average dollar volume accounts for approximately 56% of call

options and 49% of put options.

To deepen the analysis, I calculate for every ticker the daily average of the difference in

dollar volume of ITM minus OTM options. Table 5 displays the top 25 underlying stocks

with the highest daily average difference and the 25 stocks with the lowest. It stands out

that for call options, in Panel A, the top 25 stocks where ITM options are most actively

traded relative to OTM are predominantly technology companies. In contrast, the bottom

25, where OTM options dominate, are mostly small-cap high-risk investments including

Gamestop (GME) and AMC meme stocks.

For put options, this pattern is less pronounced. Notably, meme stocks like GME and

AMC do not appear in either the top or bottom 25 lists of stocks with the largest ITM-OTM

dollar volume differences, as they do for call options.
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4. ITM options and Retail Attention

The findings from the previous section highlight that ITM options are predominantly traded

by small customers, aligning with recent studies on retail options trading. For instance,

Bryzgalova, Pavlova, and Sikorskaya (2022) found that 50% of retail trades are in ultra short-

term options, typically expiring in less than a week. Similarly, Bogousslavsky and Muravyev

(2024) reported a shift in median option maturity for retail traders, dropping from four days

in 2020 to just one day by 2022, with trading heavily focused on large technology stocks and

riskier assets like GameStop (GME).

Although I focus on customers trading fewer than 100 contracts per transaction, which

may suggest retail participation in ITM options, this assumption is not definitive. As Bogous-

slavsky and Muravyev (2024) noted, the “customer” category in daily signed volume data

from open-close options may also include professional hedge funds and other participants,

making it difficult to isolate pure retail trading activity.

To overcome this limitation, I examine the relationship between StockTwits activity

and option trading to better identify retail investor behavior. While several studies have

leveraged StockTwits data to explore retail trading dynamics, this paper is the first to

specifically examine its role in retail options trading, providing novel insights into how social

media drives retail engagement in this segment of the market.

The results reveal a significant and robust correlation between the dollar trading volume

of options by small customers and retail investor activity on StockTwits. Importantly, this

correlation is more pronounce for ITM call options of stocks of market capitalization. Which

suggest that the recent increase of ITM options, discussed in the previous section, is driven

by retail traders. This further reinforces the idea that retail traders, are actively engaging in

trading of short-maturity ITM options, contributing to the broader trends observed in the

options market.
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4.1. Dollar volume of Options traded by Small Customers and Ab-
normal Retail Attention

I start by analyzing the abnormal dollar volume of options with different levels of moneyness

around days with abnormal StockTwits activity. Days with abnormal activity are defined

as those where the number of posts exceeds the stock’s historical average number of posts

by more than three standard deviations. Figure 6 plots the abnormal dollar volume of ITM,

OTM, and ATM options. The abnormal dollar volume is calculated as the difference in the

log dollar volume (in millions) from the average during the benchmark period t = [−20,−10],

where t = 0 represents the day of abnormal StockTwits activity. The figure shows the event

average as a solid line, with shaded areas representing the 95% confidence intervals.

The figure reveals a significant increase in abnormal dollar volume across all types of

moneyness, for both call and put options. However, the rise is more pronounced for ITM

call options, suggesting a strong correlation between heightened retail investor attention on

social media and a rise in ITM option trading, particularly for call options. This finding

indicates that retail investors, likely influenced by social media activity, favor short-term

ITM call options when abnormal attention spikes around certain stocks.

To explore this preference for ITM call options over ITM put options in greater detail, I

calculate the ratio of call option dollar volume to total option dollar volume around days of

abnormal StockTwits activity. This ratio allows me to further assess whether retail investors

exhibit a stronger bias towards call options, especially ITM call options, during periods of

heightened social media activity. For each stock j at time t during these events, the call

option ratio is defined as follows:

Call(j, t)Ratio =
DollarV olume(j, t)CALL

DollarV olume(j, t)CALL +DollarV olume(j, t)PUT

Figure 7 plots the average of this ratio for ITM options, comparing it to the corresponding

ratios for OTM and ATM options, along with their respective confidence intervals. For all
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types of options, the ratio exceeds 0.50, indicating that the dollar volume of call options

consistently surpasses that of put options on any given day t during the event window.

However, for ITM options, there is a notable increase in the ratio leading up to day t, the

day of abnormal StockTwits activity, a trend not observed for OTM or ATM options. This

finding suggests that retail investors show a clear and significant preference for trading ITM

call options over ITM put options, in periods of abnormal retail attention in social media.

Building on the observation that the abnormal dollar volume of ITM options increases

more than that of OTM options around periods of abnormal retail attention, particularly

for call options. I extend the analysis in a regression framework using the full time series

to ensure the economic significance of these results. Specifically, I calculate the number of

abnormal posts as the difference between the average number of posts in the previous five

days [t − 5, t − 1] and the average number during a benchmark period [t − 60, t − 6] for

each stock. I compute the abnormal dollar volume of options as the difference between the

dollar volume on day t and the average dollar volume over the previous 60 days, for every

stock. I then regress the abnormal dollar volume of options, categorized by different types

of moneyness, on the abnormal number of StockTwits posts for each underlying stock in my

database. The regression model is as follows:

AbnV olume(j)Mt =AbnPost(j, τ)t−1 + AbnNews(j, τ)t−1 + |Ret(j)[t−5,t−1]

=+ |Ret(j)[t−60,t−5]|+ V ol(j)[t−60,t−1] + αj + αt + εj,t (4)

Where AbnV olume(j)Mt represents the abnormal change in option dollar volume for stock

j at time t compared to its average dollar volume over the period [t− 60, t− 6] , for different

types of moneyness M = ITM,OTM,ATM , specifically for options traded by small cus-

tomers. AbnPost(j, τ)t−1 is the abnormal number of StockTwits posts related to stock j, cal-

culated as the difference between the average number of posts over the period τ = [t−5, t−1]

and the average over [t − 60, t − 6]. A similar calculation is applied to AbnNews(j, τ)t−1,
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which represents the abnormal number of RavenPack news mentions for stock j during the

period τ = [t − 5, t − 1], relative to the average over [t − 60, t − 6]. Ret(j)[t−5,t−1] and

Ret(j)[t−60,t−5] capture the average stock returns of j over the periods [t − 5, t − 1] and

[t−60, t−5], respectively. Lastly, V ol(j)[t−60,t−1] is the standard deviation of stock j returns

over the period [t − 60, t − 1]. The model also incorporates stock-specific and time-specific

fixed effects, αj and αt, respectively.

The results, presented in Table 6, show a significant positive relationship between ab-

normal dollar volume and the abnormal number of StockTwits posts for both call options

(columns 1 to 3) and put options (columns 4 to 6), across all types of moneyness. As ex-

pected for skewness-seeking retail investors there is a strong relatioship for OTM options.

But notably, there is also a strong relationship for ITM options. In fact for call options,

the coefficient is greater for ITM than for OTM options, suggesting a greater responsiveness

of ITM options demand by retail investors in dollar terms. This correlation remains robust

even after controlling for variables such as abnormal news volume, past stock returns, and

stock volatility. Importantly, these findings suggest that retail investors are not exclusively

drawn to options with lottery-like payoffs, such as OTM options. Instead, a segment of re-

tail investors demonstrates a preference for ITM options, rather than solely seeking skewed

returns.

4.2. ITM vs OTM Options traded by different investors

To further assess the statistical difference between the coefficients of ITM and OTM options

shown in Table 6. I refine the analysis by isolating the specific impact of ITM options relative

to OTM options. This approach enables a more precise comparison of trading activity,

offering a clearer perspective on the distinct abnormal volume dynamics across these two

categories. Specifically, I compute the abnormal dollar volume difference between ITM and

OTM options, denoted as AbnV olume(j)ITM−OTM
t . First, I calculate the difference in daily
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dollar volume between ITM and OTM options at the daily-stock level, then compute the

change of this variable for stock j at day t from its average dollar volume over the period

[t− 60, t− 6].

The results, presented in Table 7, indicate that the difference in dollar volume between

ITM and OTM call options is both positive and statistically significant, as shown in column

(1). This suggests that small customers exhibit a stronger preference for ITM call options,

particularly following periods of abnormal retail attention on StockTwits. In contrast, col-

umn (4) reflects a more modest, yet still positive, relationship for put options.

When extending the analysis to options traded by professionals and firms, a distinct

pattern emerges. The negative and significant coefficient for call options reveals in colums

(2) and (3) that institutional participants tend to favor OTM over ITM call options. For put

options, the coefficients in columns (5) and (6) are positive, yet much smaller for institutional

investors compared to small customers. This suggests that while both retail and professional

investors increase their option trading periods of abnormal retail attention on social media,

the reaction of institutional investors is far more subdued.

Overall, these findings challenge the notion that retail investors are exclusively drawn

to options with lottery-like payoffs, such as OTM options. Instead, a significant segment of

retail investors shows a preference for ITM options, suggesting that their trading behavior

is not solely driven by a desire for skewed returns. Furthermore this results highlight the

divergent responses between retail and professional investors: retail traders, gravitate toward

ITM options, whereas institutional investors display a more measured preference for OTM

options

4.3. ITM vs OTM Options for short maturities and large cap stocks

Having established the strong and significant correlation between abnormal dollar volume

of ITM options and heightened retail attention on social media, I now turn to validating
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the findings from the previous section. Specifically, I test whether the increased interest in

short-maturity ITM call options, particularly in large-cap stocks, is indeed closely linked to

surges in retail investor attention driven by social media activity.

To examine this in detail, I apply the regression model from Equation 4, usingAbnV olume(j)ITM−OTM
t

as the dependent variable, segmented into different maturity buckets: less than 7 days, 8 to

30 days, 31 to 90 days, and more than 91 days. The results, presented in Table 8 on Panel A

confirm that the effect is most pronounced for options with shorter maturities, particularly

those under 7 days for small customers. This indicates that retail investors, influenced by

spikes in social media attention, are more inclined to engage in speculative trading with

short-term ITM options. The heightened sensitivity of these options to underlying stock

movements, coupled with the immediacy of their expiration, makes them an attractive in-

strument for retail traders seeking quick returns. For profesionals and firms, the results

depicted in Table ?? of the Appendix, reveal a more measured response.

Next, I explore the cross-sectional variation in ITM option dollar volumes based on the

size of the underlying stocks by estimating the following regression:

AbnV olumeITM−OTM
j,t =AbnPost(τ)j,t−1 + 1

Small Size + 1
Big Size + AbnPost(τ)j,t−1 × 1

Small Size

+ AbnPost(τ)j,t−1 × 1
Big Size + C + αj + αt + εj,t

Where 1Big Size is a dummy variable set to one if the underlying stock of the option belongs

to the top size quantile according to its market capitalization. 1Small Size is a dummy variable

set to one if the underlying stock of the option belongs to the bottom size quantile according

to its market capitalization. On Table 9 the results on Panel A shows that correlation of

abnormal attention of retail investors and abnormal dollar volume of ITM over OTM options

traded by small customers is stronger for big-size stocks. In contrast for small-size stocks

the coefficient is negative and significant, suggesting that there is a higher dollar volume

of OTM over ITM options. Notably, for call options traded by professionals and firms, the
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interaction coefficient for large-cap stocks and abnormal retail attention is also negative and

significant, indicating a preference for OTM over ITM options. However, the magnitude of

this coefficient remains smaller than that observed for small customers, further emphasizing

the differing responses between retail and institutional investors. While small customers,

particularly in large-cap stocks, tend to favor ITM options when influenced by abnormal

social media attention, professionals and firms lean toward OTM options, but their reaction

is more subdued compared to the more speculative behavior of retail traders.

Overall this confirm the recent increase of ITM options of short maturity and large-caps

are related to the recent activity of retai attention in social media, which suggests that

retail investors are favouring ITM options, for short term strategies and for stocks with

market capitalization stocks. In fact, Bogousslavsky and Muravyev (2024) suggests that

retail investors are primarily drawn to options trading as a means of gaining exposure to

high-priced underlying assets. This supports my findings, indicating that retail investors

are strategically leveraging ITM options to capitalize on short-term movements in large-

cap stocks, while still pursuing lottery-like payoffs from OTM options. This dual approach

reflects a more nuanced understanding of how retail traders balance risk and reward in their

option trading strategies.

4.4. Robustness check

In this section, I perform a test to ensure the robustness of my results. Specifically, I refine

the variable AbnPost(j, τ)t−1, which accounts for all posts related to stock j. While this

metric captures general retail attention, not all posts necessarily pertain to option trading.

To address this, I perform a robustness check by filtering posts specifically related to option

trading. Using text analysis, I extract keywords from each post that are commonly associated

with option trading, such as“derivatives”,“calls”,“puts”,“call spread”,“put spread”,“itm”,“in

the money”,“in-the-money”,“otm”,“out of the money”,“out-of-the-money”,“at-the-money”,“at
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the money”. This filtering ensures that the analysis focuses solely on posts relevant to op-

tions, providing a more targeted measure of retail attention in the options market. The

volume of option-related posts has surged since 2018, aligning with the introduction of

commission-free options trading for retail investors by platforms like Robinhood.

The number of posts specifically related to option trading is significantly lower than the

total number of posts on StockTwits. Figure 5 illustrates this distinction by showing the

total number of posts aggregated by month. Panel A presents all posts, while Panel B shows

the subset of posts containing at least one of the aforementioned option-trading-related

keywords.

I then estimate the following the regression:

AbnV olumeITM−OTM
j,t =AbnPost(j, τ)t−1 + 1

Option
j,t−1 + AbnPosts(τ)t−1 × 1

Option
j,t−1 + AbnNews(j, τ)t−1

+ |Ret(j)[t−5,t−1]|+ |Ret(j)[t−60,t−1]| + V ol(j)[t−60,t−1] + αj + αt + εj,t

where AbnV olume(j,M)t, AbnPost(j, τ)t−1, AbnNews(j, τ)t−1, |Ret(j)[t−5,t−1]|,

|Ret(j)[t−60,t−1]| and V ol(j)[t−60,t−1] are defined in Equation 4. 1Option
j is a dummy variable

set to one if a stock j has at least 60 posts related to option trading in the 60 preceding

days. The results, displayed in Table 10, show that for both call and put options, the

interaction term between abnormal StockTwits posts and option-related content is positive

and statistically significant. This effect is particularly pronounced for ITM and OTM options,

and remains robust even after controlling for other variables. These results reveal that social

media attention of retail investors, particuarly posts related to option trading, have a greater

impact on the options trading behavior of small customers.
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5. Trading motives and performance of ITM options

5.1. Motives

Although retail investors are commonly associated with favoring OTM options for their

lottery-like payoffs and positive skewness, the evidence drawn from Stocktwits posts reveals

a distinct motivation when it comes to ITM options. Some examples of these posts are

depicted in Figure AA2 on the Appendix. These unsophisticated investors arappear to be

attracted toward ITM options, driven by the perceived higher likelihood of payoff. OTM

call options, though cheaper and capable of delivering higher expected returns due to their

skewed payoff structure, they have lower probability of exercise.

If true, I should see that returns on ITM call options are more consistent and less volatile

compared to OTM options, reflecting the higher likelihood of positive returns, particularly

for options with short maturity. To test this, I calculate the daily returns of all call option

contracts and compute the average for each underlying stock, distinguishing between ITM

and OTM options, as well as between short and long-maturity options. The distribution of

these call option returns is presented in Figure 8. In Panel A, the distribution of daily returns

for call options with less than 7 days to expiration clearly shows that ITM options exhibit

a narrower and more centered distribution, in contrast to the wider and more left-skewed

distribution of OTM options. This suggests that ITM options deliver more stable returns,

reinforcing the notion that retail investors are drawn to their higher probability of a positive

return in short-term strategies. In Panel B, the distribution of daily returns for call options

with more than 90 days to expiration reflects a less pronounced difference between the daily

average return distributions of ITM and OTM options.

5.2. Performance

This raises the question of whether ITM invesotors actually outperform? To answer this,

I calculate the performance of each option contract using its daily net open interest and
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price, as explained in the Section 2. I further calculate the cummulative performance,

for each option contract at different horizons h = 5, 10, 30 days as the sum of the per-

formane in h days CumPerf(j,M)t,h =
∑t

t−h in millions of dollars, and in returns(%)

%CumPerf(j,M)t,h =
∑t

t−h%PerfNOIj. Next, I analyze the contemporanesous correla-

tion of the cummulative performance aggregate by stock for options at different types of

moneyness and the abnormal activity of that stock in Stocktwits categorized in deciles, by

calcuting the following regression:

$CumPerfj,t,h = 1
AbnPost
d + αj + αt + εj,t (5)

Where 1AbnPost
d is dummy variable equal to one if the abnormal attention of that stock in

Stocktwits belong to the d decile of the distribution of abnormal attention for all stocks in

day t. The abnormal attention is calculated as the number of posts related to stock j over the

horizon of h days [t−h, t], minus the average on [t−60, t−h]. αs and αt correspond to stock

and day fixed effects, respectively. The results, depicted in Table 11, reveal a significant

negative relationship between cumulative performance in dollar terms and dummy decile

variables of abnormal retail investor activity on StockTwits, considering the horizon of 5

days. Particularly, the coefficients of the abnormal rettail attention variable that belong

to the lowest decile, is related to a positive cumulative performance in dollar terms. This

coefficient decreases for abnormal retail attention variables that belong to higher deciles.

For the abnormal retail attention variables that belong to the highest attention decile, the

performance of ITM options is significantly negative, and in fact, underperform any other

options for that same decile. Notably, this negative relationship is more pronounced for ITM

call options compared to OTM call options.

I further repeat this analysis for the cumulative performance in percentage return, by
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regressing:

%CumPerf(j,M)t,h =AbnPost(j, τ)t,h + αj + αt + εj,t

Where %CumPerf(j,M)t,h is the cummulative sum of percentage returns from t − h to t

for each option contract. The results on the entire sample, from 2014 to 2022 are depicted

in Table 12. As with the dollar performance analysis, I find that the coefficient for ITM call

options is the most negative for a 5-day horizon. However, as the horizon length increases,

the returns for OTM call options become more negative and surpass those of ITM options

for a 30-day horizon. When splitting the period into before and after 2018, as detailed in

Table ??, the coefficient for both ITM and OTM call options becomes significantly more

negative after 2018. This trend confirms that retail trading’s impact is more pronounced

post-2018, with ITM call options showing the most substantial negative performance.

Given that previous results indicate retail investors significantly trade ITM options, it is

important to examine the consequences of this behavior, particularly regarding the perfor-

mance of these low-leverage options. The literature on retail trading has highlighted concerns

about the poor performance of unsophisticated investors in the options markets (Bryzgalova,

Pavlova, and Sikorskaya, 2022, de Silva, Smith, and So (2023)). Therefore, in this section, I

analyze the impact of trading ITM options on the wealth of small customers

Overall, these results reveal a significant negative correlation between cumulative perfor-

mance (both in dollar terms and percentage returns) of ITM options and abnormal retail

activity on StockTwits. This negative relationship is particularly pronounced for ITM call

options, suggesting that these low-leverage options underperform more severely when retail

investor attention increases. This highglights the impact of retail trading on the performance

of ITM options, indicating that these options are particularly vulnerable to poor performance

when retail trading volumes increase.
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6. Optimal strategy for trading ITM options

In the previous section, I demonstrated that ITM options underperform the most during

periods of increased retail trading. This raises an important question: why do ITM investors

underperform? To answer this, I propose in this paper an optimal strategy to trade ITM

options based a toy model that adapts the Kelly Criterion to the options market.

While much of the existing literature has linked the gambling motives of unsophisticated

investors to trading options with positive skewness, such as deep OTM options with lottery-

like payoffs, this paper takes a different approach. It explores the possibility that these

investors use low-leverage ITM options as a form of betting. The motivation for using

the Kelly Criterion lies in its origins in gambling, particularly in sports betting and casino

games like blackjack Thorp (1966). Over time, its application extended to financial markets,

as noted by Thorp (1975).

Interestingly, there is evidence that investors on StockTwits mention the Kelly Criterion

in their trading strategies. By scraping posts that include the terms ”Kelly Criterion” or

”Kelly Criteria,” I identified 143 posts between 2014 and 2022, with a noticeable increase in

recent years. Figure AA3 highlights 10 examples of such posts. Many of these posts discuss

how investors use the Kelly Criterion to determine position sizing, often viewing their trades

as bets. Notably, most of the posts referencing the Kelly Criterion are connected to betting

or gambling strategies. In fact, one of these posts, of User X6 in Figure AA3 suggests the idea

that some retail investors approach low-leverage options like ITM calls through a gambling

perspective, using the Kelly Criterion.

In this section, I provide a detailed overview of the Kelly Criterion and its application

in determining the optimal fraction of wealth to invest in both ITM and OTM options. By

conducting a comparative statistical analysis that accounts for the volatility of the underlying

stock at the option’s maturity, I find that the optimal allocation when trading ITM options

favors contracts with short maturity and underlying stocks with low volatility.
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While ITM investors tend to gravitate toward short-maturity options, they often fail to

adjust their trading strategies around events characterized by heightened stock volatility.

This misstep contributes to their underperformance, as ITM options are particularly sen-

sitive to fluctuations in volatility. This sensitivity becomes even more pronounced during

periods of increased retail participation, when stock volatility tends to spike, exacerbating

the challenges faced by ITM investors in generating consistent returns.

6.1. Kelly Criterion

The Kelly Criterion, introduced by Kelly in 1956 Kelly (1956), serves as a method to de-

termine the optimal fraction or size of wealth to invest in a bet or a favorable investment

opportunity, aiming to maximize the exponential growth rate.

In contrast with conventional portfolio optimization methods like mean-variance analysis,

which seek to maximize a portfolio’s expected returns, the Kelly Criterion pursues the max-

imization of the expected value of the logarithm of wealth, essentially optimizing expected

logarithmic utility. The key idea behind the Kelly Criterion is to allocate more capital to

opportunities with higher expected returns and favorable odds, while also considering the

possibility of losses.

The Kelly criterion corresponds to the following Bayesian decision problem under binary

uncertainty that optimizes the bidding fraction of total assets. Consider a sequence of i.i.d.

bets where the probabilities of events are known and independent, where p is the probatility

of a win, q = 1− p is the probability of a loss, and f (0 < f < 1) is the bidding fraction of

the total assets at each turn.
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6.2. Kelly Criterion with Asymmetric Payoffs

Given the initial capital X0 and afterW number of wins and L number of losses (W+L = n),

the capital Xn at the n-th trial is:

XT = X0

(
(1 + bf)W (1− f)L

)
The quantity that measures the exponential rate of increase per trial is the growth rate of

wealth:

Gn(f) = log

[
Xn

X0

]1/n
=

W

n
log(1 + bf) +

L

n
log(1− f)

Kelly chose to maximize the expected value of growth rate coefficient as follows:

gn(f) = E

(
log

[
Xn

X0

]1/n)
= plog(1 + bf) + (1− p)log(1− f)

g′(f) =
pb

1 + bf
− 1− p

1− f
= 0

The optimal betting fraction, f ∗, is:

f ∗ =
p(1 + b)− 1

b

Assuming Black and Scholes, we can implement these framework in the context of options.

The bet size will be determined by the price paid for the option. In the case of call options,

this will be C(S0, T ), where S0 is the stock price at time t = 0 and T is the maturity of

the option. The gain per unit bet is the profit earned when the option is exercised, for Call

options is FT −K, where FT = S0 exp
rT is forward stock price maturing at t = T assuming

a risk free r, and K is the strike price of the option. Therefore for Call options b will be:

b =
FT −K

C(S0, T )
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Furtheremore, the probability of winning the bet p, for options can be interpreted as the

probability of exercising the option, which is captured by the Delta of the option ∆ and it

is defined as ∆ = N(d1). Thus, plugging all numbers in f ∗:

f ∗ =
∆
(
1 + FT−K

C(S0,T )

)
− 1

FT−K
C(S0,T )

=
N(d1)

(
1 + FT−K

C(S0,T )

)
− 1

FT−K
C(S0,T )

= N(d1)− (1−N(d1))
C(S0, T )

FT −K

Where:

FT = S0 exp
rT

d1 =
log
(
S0

K

)
+ (r + σ2/2)T

σ
√
T

d2 = d1 − σ
√
T

C(S0, T ) = S0N(d1)− exp−rT KN(d2)

Note that since FT = S0 exp
rT , then b = S0 exprT −K

S0N(d1)−exp−rT KN(d2)
. Therefore for every level

of moneyness α such that K = αS0, then b does not depend of the stock price S0 at time

t = 0 since b = S0 exprT −αS0

S0N(d1)−exp−rT αS0N(d2)
= exprT −α

N(d1)−exp−rT αN(d2)
. In other words, changes in the

stock price will not change the value of b on every period of investment.

6.3. Comparative Statics

This section offers comparative statics results on the changes in the optimal investment frac-

tion, denoted as f ∗ according to the Kelly Criterion, in response to variations in the maturity

(T ) and volatility (σ) of options, considering both ITM and OTM options. The findings un-

veil two crucial observations: 1) a negative correlation between the optimal fraction invested

in ITM options and the option’s maturity, and 2) a negative correlation between the optimal

fraction invested in ITM options and the historical volatility of the underlying stock. The

following four propositions offer a more detailed exploration of these relationships.
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6.3.1. Maturity

Proposition 1 For ITM options, when FT − K > 0, then ∂f∗

∂T
< 0 for all strike prices

K < S0 exp
−(r+σ2/2)T . That is, there is a negative relationship between the optimal fraction

of investment and the maturity of ITM options.

Proof: See Appendix

6.3.2. Volatility

Proposition 2 For ITM options, when FT − K > 0, then ∂f∗

∂σ
> 0, for all strike prices

K < S exp(r−σ2/2)T and σ2/2 > r. That is, there is a negative relationship between the

optimal fraction of investment and the volatiity of the stock for ITM options.

Proof: See Appendix

Proposition 3 For OTM options, when FT − K > 0, then ∂f∗

∂σ
> 0, for all strike prices

K > C(S0, T ) + FT and σ2/2 > r. That is, there is a positive relationship between the

optimal fraction of investment and the volatility of OTM options.

Proof: See Appendix

In Figure 9, I illustrate these findings. Panel A depicts the optimal investment fraction

f ∗ and its variations across different maturity levels. Specifically, subplots (a) and (b)

respectively depict this relation for OTM and ITM options, considering different moneyness

levels. Similarly, Panel B presents the optimal investment fraction f ∗ across varying levels

of historical stock volatility. Subplots (c) and (d) represent this relationship for OTM and

ITM options, accounting for different moneyness levels as well.

Overall, these findings explain why small customers underperform when trading ITM

options during periods of heightened retail activity. While these retail investors may follow

the Kelly Criterion’s guidance of focusing on low-volatility stocks, they fail to trade around

events of increased stock volatility. Consequently, ITM options, which may seem like sound
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investments under stable market conditions, are prone to underperformance in volatile en-

vironments driven by surges in retail trading. This underscores the significant role ITM

options play within the broader landscape of the options market and the need for investors

to consider volatility dynamics when trading these low leverage options as a form of betting

or gambling.

7. Conclusion

The motives driving investors to trade in equity options have long been centered around

leverage. Options allow investors to control larger positions in the underlying asset with less

capital, amplifying potential returns compared to direct ownership. This leverage, particu-

larly in OTM options, has been the focus of much academic research, offering both higher

expected returns and the allure of lottery-like payoffs. However, this paper shifts the focus

to ITM options, which offer lower leverage but have been largely underexplored.

This study fills the gap by highlighting the economic significance of ITM options and

examining the behavioral and economic factors that influence investor preferences for these

lower-leverage instruments. ITM options, particularly those with short maturities, have

become increasingly popular with retail investors due to their perceived higher probability

of payoff and the potential for consistent, albeit smaller, returns. By constructing one of the

most comprehensive open-close option databases, covering 70% of the equity options market,

I provide new insights into the trading behaviors of small customers, who drive much of the

ITM options activity.

Among the findings, I observe that ITM options capture a significantly larger share

of the dollar volume traded by small customers, especially in large-cap stocks and short-

term contracts. Retail investors, as evidenced by social media data from StockTwits, are

particularly drawn to ITM call options during periods of heightened retail attention, often

focusing on high-priced technology stocks. This trend persists even when controlling for
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stock returns, volatility, and news volume, suggesting that social media plays a critical role

in shaping retail trading behavior.

However, despite their popularity, ITM options tend to underperform, particularly during

periods of elevated retail attention. Using the Kelly Criterion as a theoretical framework, I

demonstrate that retail investors may fail to follow this strategy, favoring short-term ITM

options without fully accounting for stock volatility. The findings open avenues for future

research into the gambling tendencies of retail investors and the motives of investors to trade

options beyond leverage.
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Figure 1. Exchange Volume Coverage

This figure shows the monthly aggregated volume of options of stocks with share code 10
or 11 from CRSP at the contract-day level, as percentage of the total volume reported on
Optionmetrics. The sample period is from January 1, 2012, to December 31, 2022.
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Figure 2. Average Trade and Dollar Volume of options traded by Small Customers

This figure displays the average stock-daily trade volume in Panel A and the average stock-
daily dollar volume in Panel B, segmented by different levels of moneyness for call and put
options traded by small customers. The level of moneyeness F/K is calculated as the ratio
between the Forward Price of the Stock (F) and the Strike Price of the Option Contract
(K). The sample period January 2014 to December 2022 for options of all stocks considered
in the analysis.
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Figure 3. Dollar Volume

This figure shows the daily average dollar volume at the stock-daily level for different level
of moneyness: ITM, OTM and ATM. Moneyness of an option is calculated the ratio (F/K)
between the Forward Price of the Stock (F) and the Strike Price of the Option Contract
(K). For call options, if F/K < 0.975, the contract is considered to be OTM, while if
F/K > 1.025, it is ITM. Conversely, for put options, if F/K < 0.975, the contract is ITM,
and if F/K > 1.025, it is OTM.
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Figure 4. Dollar Volume by Maturity

This figure shows box plot of the stock-daily dollar volume for ITM Call (Panel A) and
OTM Call (Panel B) options with different levels of maturity. The arms of the box plot
represent the 10th and 90th percentile of the distribution. The sample period January 2014
to December 2022 for options of all stocks considered in the analysis.
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Figure 5. Information production on Stocktwits

This figure shows the monthly number of stock-specific posts on StockTwits on Panel A. The
monthly number of stock-specific posts related to option trading on Stockstwtis on Panel B.
The sample period is from January 1, 20134, to December 31, 2022.
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Figure 6. Dollar option volume around abnormal Stocktwits activity of Small Customers

This figure illustrates the dollar volume of options traded by small customers on days with
abnormal post activity on StockTwits. The abnormal dollar volume is calculated as the
difference in the log dollar volume (in millions) from the average during the benchmark
period t = [−20,−10], where t = 0 represents the day of abnormal StockTwits activity.
Abnormal activity is defined as a daily change in the number of posts for a specific stock
that exceeds three standard deviations. The solid line represents the average, while the
shaded area indicates the 95% confidence intervals. Panel A and Panel B depicts the results
for call options and put options, respectively. The events considered occured from January
1, 2013, to December 31, 2022.
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Figure 7. Call volume of options around abnormal Stocktwits activity of Small Customers

This figure illustrates the ratio of call option dollar volume to the total option dollar volume
around days of abnormal StockTwits activity. For each stock j at time t during each event,.
Abnormal activity is defined as a daily change in the number of posts for a specific stock
that exceeds three standard deviations.

Call(j, t)Ratio =
DollarV olume(j, t)CALL

DollarV olume(j, t)CALL +DollarV olume(j, t)PUT

The solid line represents the average, while the shaded area indicates the 95% confidence
intervals. Panel A and Panel B show the results for call options and put options, respec-
tively.The events considered occured from January 1, 2013, to December 31, 2022.
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Figure 8. Call options stock-daily return distribution

This figure presents the distribution of daily returns, expressed in percentage (%), for all call
option contracts, averaged for each underlying stock. The sample period covers January 1,
2014, to December 31, 2022.
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Figure 9. The optimal fraction investment f ∗ according to Kelly Criterion
This figure shows the optimal fraction of investment f ∗ according to Kelly Criterion to
different levels of Maturity (a and b) and Volatility (c and d) and for a Call OTM and a
Call ITM option respectively.

f ∗ = N(d1)− (1−N(d1))
C(S,M)

SM −K
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Table 1

Database characteristics

This table reports the average, per year, of the number of unique option contracts, unique
stocks, and option observations considered in the database after merging all 8 exchanges
considered, at the option contract-daily level, of options traded by Small-size Customers,
Professionals and, Firms. The sample period is from January 1, 2014, to December 31, 2022.

Year # of unique option contracts # of option observations # of unique stocks

2014 2,327,362 110,472,482 2,861

2015 2,738,454 126,585,514 3,070

2016 2,740,471 126,354,540 3,003

2017 2,732,423 125,651,794 2,920

2018 3,034,317 134,938,416 2,884

2019 3,032,442 139,029,998 2,840

2020 3,660,093 169,408,389 2,931

2021 4,018,838 200,778,913 3,501

2022 3,907,593 193,689,127 3,481



Table 2

Summary Statistics of Equity Options Dollar Volume by Investor

This table reports the summary statistics the daily-stock average of the dollar volume traded
in equity options traded by Small-size Customers, Professionals and Firms. The sample
period is from January 1, 2014, to December 31, 2022.

A. Call Options

Small Customers Professionals Firms

ITM OTM ATM ITM OTM ATM ITM OTM ATM

Mean 201,629 102,435 172,036 28,755 23,490 26,556 51,416 42,830 47,811

5th 305 52 180 320 52 174 254 60 120

25th 1,890 550 1,335 1,438 526 1,233 1,275 560 900

Median 8,970 3,255 6,910 5,355 2,685 5,018 5,541 3,540 4,945

75th 49,285 20,590 39,912 20,000 13,660 19,825 29,242 22,250 27,318

95th 645,062 292,972 516,900 143,414 121,125 125,842 312,400 260,402 290,176

Total (%) (42%) (29%) (29%) (21%) (42%) (38%) (23%) (44%) (33%)

B. Put Options

Small Customers Professionals Firms

ITM OTM ATM ITM OTM ATM ITM OTM ATM

Mean 147,026 87,552 125,147 33,813 24,987 28,541 67,924 50,753 51,799

5th 242 50 145 368 73 212 277 62 127

25th 1,410 472 983 1,865 742 1,470 1,725 652 1,095

Median 6,450 2,700 4,890 7,121 3,572 5,762 9,350 4,465 6,225

75th 35,185 17,000 28,872 26,790 16,125 22,530 53,808 29,235 34,258

95th 459,870 237,745 347,150 154,402 128,696 136,442 314,512 312,400 312,400

Total (%) (38%) (32%) (29%) (24%) (39%) (37%) (24%) (45%) (31%)



Table 3

Dollar Volume by Maturity and type of Investor

This table reports the daily-stock average dollar volume traded in equity options traded by
Small-size Customers, Professionals, and Firms, for different maturities. Panel A reports
data for call options, while Panel B focuses on put options. The sample period spans from
January 1, 2014, to December 31, 2022.

A. Call Options (dollars)

Small Customers Professionals Firms

Maturity ITM OTM ATM ITM OTM ATM ITM OTM ATM

0 to 7 days 123,715 36,451 106,212 18,981 4,824 10,881 34,395 11,984 25,050

7 to 30 days 81,959 38,556 74,996 17,772 8,663 15,443 32,955 18,790 28,051

30 to 90 days 73,651 39,787 58,317 17,393 11,690 13,745 34,559 26,288 31,294

> 90 days 102,614 56,515 60,156 27,249 20,024 15,916 52,712 44,288 45,178

B. Put Options (dollars)

Small Customers Professionals Firms

Maturity ITM OTM ATM ITM OTM ATM ITM OTM ATM

0 to 7 days 102,652 31,645 84,277 19,386 4,569 10,256 35,896 11,737 24,351

7 to 30 days 64,041 33,508 56,127 18,130 8,800 15,727 39,547 19,260 29,637

30 to 90 days 53,007 35,121 41,855 18,461 11,996 14,889 48,043 28,062 35,010

> 90 days 77,500 51,093 45,333 32,517 21,847 18,189 79,725 61,681 59,445



Table 4

Dollar Volume by Market Capitalization and type of Investor

This table reports the daily-stock average dollar volume traded in equity options traded by
Smal-size Customers, Professionals, and Firms, for stocks with different market capitaliza-
tions. Panel A reports data for call options, while Panel B focuses on put options. The
sample period spans from January 1, 2014, to December 31, 2022.

A. Call Options (dollars)

Market Cap Small Customers Professionals Firms

Quintile ITM OTM ATM ITM OTM ATM ITM OTM ATM

1 41,879 23,812 26,259 13,186 6,993 7,788 21,042 14,227 14,101

2 57,110 35,429 28,831 16,236 9,809 8,634 26,382 18,460 15,526

3 75,224 44,877 34,757 16,096 11,567 9,095 30,591 22,756 19,513

4 104,334 57,294 52,293 17,947 14,820 11,717 36,344 28,627 24,267

5 579,608 332,962 427,803 40,852 36,698 38,009 85,345 74,455 71,928

B. Put Options (dollars)

Market Cap Small Customers Professionals Firms

Quintile ITM OTM ATM ITM OTM ATM ITM OTM ATM

1 36,687 17,177 17,513 15,363 8,054 8,108 43,099 18,630 18,770

2 55,159 21,485 18,907 17,609 8,673 8,897 50,363 19,654 18,525

3 69,298 28,426 23,944 19,216 10,443 9,928 50,840 23,632 23,149

4 90,229 38,710 34,537 24,331 13,554 12,963 52,487 30,612 26,488

5 371,996 252,278 283,723 47,864 37,066 40,233 95,653 79,540 72,528



Table 5

Dollar Volume by Market Capitalization and type of Investor

This table reports the daily-stock average of the difference between dollar volume of ITM
minus OTM options (DollarV olumeITM−OTM) traded by Small-size Customers, categorized
by market capitalization quintiles. Panel A reports data for call options, while Panel B
focuses on put options. The sample period spans from January 1, 2014, to December 31,
2022.

A. Call options
Top 25 Bottom 25

Underlying ticker Market Cap Quintile DollarV olumeITM−OTM

AAPL 5 4,796,994

FB 5 3,973,510

AMZN 5 3,576,562

GOOG 5 2,499,376

GOOGL 5 2,356,070

NFLX 5 2,119,205

MSFT 5 2,047,937

NVDA 5 1,880,446

PCLN 5 1,499,945

TSLA 5 1,498,462

BRK 5 1,331,174

BAC 5 1,233,561

CMG 5 1,071,563

MU 5 888,526

TTD 5 874,276

Underlying ticker Market Cap Quintile DollarV olumeITM−OTM

BFT 3 -219,696

CCIV 3 -239,534

DPHC 3 -251,829

CLOV 1 -261,981

RBLX 5 -264,911

AMC 2 -285,961

FUBO 2 -315,851

SHLL 2 -316,542

ABNB 5 -337,648

GME 3 -344,597

RIVN 5 -489,506

SPAQ 1 -533,808

COIN 5 -797,551

META 5 -831,550

PLTR 5 -857,568

B. Put options
Top 25 Bottom 25

Underlying ticker Market Cap Quintile DollarV olumeITM−OTM

META 5 1,783,892

UPST 3 1,447,092

COIN 5 1,271,515

RIVN 5 972,828

HOOD 4 864,491

PLTR 5 852,339

CCIV 3 817,786

DKNG 4 805,457

ROKU 4 794,407

QS 3 727,157

SOFI 4 692,701

BYND 1 675,030

LCID 4 668,683

AFRM 4 668,510

RBLX 5 631,168

Underlying ticker Market Cap Quintile DollarV olumeITM−OTM

AVGO 5 -59,620

UNH 5 -61,746

ACT 3 -74,092

GREE 1 -103,824

ZS 5 -132,575

CRWD 5 -136,216

FB 5 -167,069

SHLL 2 -173,905

QCOR 4 -266,256

AAPL 5 -266,531

GOOGL 5 -295,186

NFLX 5 -356,631

TSLA 5 -518,632

NVDA 5 -823,097

AMZN 5 -896,716



Table 6

Abnormal Dollar Volume of options traded by Small-size Customers

This table reports the coefficients of the following regression

AbnV olume(j)Mt =AbnPost(j, τ)t−1 +AbnNews(j, τ)t−1 + |Ret(j)[t−5,t−1]|
+ |Ret(j)[t−60,t−1]| + V ol(j)[t−60,t−1] + αj + αt + εj,t

Where AbnV olume(j)Mt represents the abnormal log of option dollar volume for stock j at time t,
relative to the average log option dollar volume over the period [t − 60, t − 6], for different levels
of moneyness M = ITM,OTM,ATM , traded by small-size customers. AbnPost(j, τ)t−1 is the
abnormal log number of posts average on [t − 5, t − 1], minus the log number of posts average on
[t− 60, t− 6], of underlying stock j. AbnNews(j, τ)t−1 is the abnormal log number of Ravenpack
news average on [t− 5, t− 1], minus the log number of Ravenpack news average on [t− 60, t− 6],
related to underlying stock j. |Ret(j)[t−5,t−1]|, and |Ret(j)[t−60,t−5]| is the total return of stock j,
in absolute value, on the periods [t−5, t−1] and [t−60, t−5] respectively. Finally, V ol(j)[t−60,t−1]

is the standard deviation of the daily returns of stock j on [t − 60, t − 1]. αj and αt correspond
to stock and day fixed effects, respectively. Newey-West corrected standard errors are clustered by
stock and day, and are presented in parentheses. *, ** , and *** indicate statistical significance at
the 10%, 5%, and 1% levels, respectively. The sample period is from January 1, 2014, to December
31, 2022.

Call options Put options

ITM OTM ATM ITM OTM ATM

AbnPosts(τ) 0.0124*** 0.0096*** 0.0060*** 0.0072*** 0.0054*** 0.0035***

(0.0004) (0.0004) (0.0002) (0.0003) (0.0002) (0.0001)

N 5,792,332 5,792,332 5,792,332 5,792,160 5,792,160 5,792,160

R2(%) 0.80 0.94 0.54 0.46 0.62 0.42



Table 7

Abnormal Dollar Volume of options: ITV vs OTM

This table reports the coefficients of the following regression

AbnV olume(j)ITM−OTM
t =AbnPost(j, τ)t−1 +AbnNews(j, τ)t−1 + |Ret(j)[t−5,t−1]|

+ |Ret(j)[t−60,t−5]|+ V ol(j)[t−60,t−1] + αj + αt + εj,t

Where AbnV olume(j)ITM−OTM
t represents the abnormal log of the option dollar volume difference

of ITM minus OTM options for stock j at time t, relative to the average of the same variable over
the period [t−60, t−6]. AbnPost(j, τ)t−1 is the abnormal log number of posts average on [t−5, t−1],
minus the log number of posts average on [t− 60, t− 6], of underlying stock j. AbnNews(j, τ)t−1

is the abnormal log number of Ravenpack news average on [t − 5, t − 1], minus the log number
of Ravenpack news average on [t − 60, t − 6], related to underlying stock j. |Ret(j)[t−5,t−1]|, and
|Ret(j)[t−60,t−5]| is the total return of stock j, in absolute value, on the periods [t − 5, t − 1] and
[t− 60, t− 5] respectively. Finally, V ol(j)[t−60,t−1] is the standard deviation of the daily returns of
stock j on [t− 60, t− 1]. αj and αt correspond to stock and day fixed effects, respectively. Newey-
West corrected standard errors are clustered by stock and day, and are presented in parentheses.
*, ** , and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The
sample period is from January 1, 2014, to December 31, 2022.

Call options Put options

Small Customers Professionals Firms Small Customers Professionals Firms

AbnPosts(τ) 0.0038*** -0.0002*** -0.0007*** 0.0022*** 0.0002*** 0.0007***

(0.0003) (0.0001) (0.0001) (0.0003) (0.0001) (0.0001)

N 5,766,678 5,766,678 5,766,678 5,766,668 5,766,668 5,766,668

R2 0.09 0.00 0.00 0.04 0.00 0.00

Controls Yes Yes Yes Yes Yes Yes



Table 8

Abnormal Volume of options traded by Small-size Customers by Maturity

This table reports the coefficients of the following regression

AbnV olume(j)ITM−OTM
t =AbnPost(j, τ)t−1 +AbnNews(j, τ)t−1 + |Ret(j)[t−5,t−1]|

+ |Ret(j)[t−60,t−5]|+ V ol(j)[t−60,t−1] + αj + αt + εj,t

Where AbnV olume(j)ITM−OTM
t represents the abnormal log of the option dollar volume difference

of ITM minus OTM options for stock j at time t, relative to the average of the same variable over the
period [t− 60, t− 6]. AbnNews(j, τ) is the abnormal average of number of Ravenpack news related
to stock j on [t− 5, t− 1], minus the average on [t− 60, t− 6]. Ret(j)[t−5,t−1], and Ret(j)[t−10,t−5]

is the average of return of stock j on the [t − 5, t − 1] and [t − 10, t − 5], respectively. Finally,
V ol(j)[t−10,t−1] is the average of the historic volatility of stock j on [t − 10, t − 1]. αs and αt

correspond to stock and day fixed effects, respectively. Newey-West corrected standard errors are
clustered by stock and day, and are presented in parentheses. *, ** , and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January 1,
2014, to December 31, 2022.

Call options Put options

1 to 7 days 7 to 30 days 30 to 90 days 90 days 1 to 7 days 7 to 30 days 30 to 90 days 90 days

AbnPosts(τ) 0.0077*** 0.0023*** -0.0001 0.0004** 0.0060*** 0.0013*** -0.0001 0.0000

(0.0005) (0.0002) (0.0002) (0.0002) (0.0004) (0.0002) (0.0001) (0.0001)

N 1,730,113 4,634,609 5,541,641 5,762,086 1,730,014 4,634,780 5,540,910 5,759,148

R2(%) 0.25 0.07 0.01 0.01 0.17 0.03 0.00 0.01

Controls Yes Yes Yes Yes Yes Yes Yes Yes



Table 9

Abnormal Volume of options by Market Capitalization

This table reports the coefficients of the following regression

AbnV olumeITM−OTM
j,t =AbnPost(τ)j,t−1 + 1

Small Size + 1
Big Size +AbnPost(τ)j,t−1 × 1

Small Size

+AbnPost(τ)j,t−1 × 1
Big Size + C + αj + αt + εj,t

Where AbnV olume(j)ITM−OTM
t represents the abnormal log of the option dollar volume difference

of ITM minus OTM options for stock j at time t, relative to the average of the same variable over the
period [t− 60, t− 6]. AbnNews(j, τ) is the abnormal average of number of Ravenpack news related
to stock j on [t− 5, t− 1], minus the average on [t− 60, t− 6]. Ret(j)[t−5,t−1], and Ret(j)[t−10,t−5]

is the average of return of stock j on the [t − 5, t − 1] and [t − 10, t − 5], respectively. Finally,
V ol(j)[t−10,t−1] is the average of the historic volatility of stock j on [t − 10, t − 1]. αs and αt

correspond to stock and day fixed effects, respectively. Newey-West corrected standard errors are
clustered by stock and day, and are presented in parentheses. *, ** , and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January 1,
2014, to December 31, 2022.

Call options Put options

Small Customers Professionals Firms Small Customers Professionals Firms

AbnPosts(τ) 0.0043*** -0.0001 -0.0004*** 0.0018*** 0.0002* 0.0009***

(0.0004) (0.0001) (0.0001) (0.0003) (0.0001) (0.0001)

1
Small Size 0.0040*** 0.0005*** 0.0004*** 0.0017*** 0.0001 0.0012***

(0.0007) (0.0001) (0.0001) (0.0007) (0.0001) (0.0002)

1
Big Size -0.0092*** 0.0017*** -0.0014** 0.0024 0.0007* 0.0028***

(0.0025) (0.0005) (0.0006) (0.0024) (0.0004) (0.0007)

AbnPosts(τ)× 1
Small Size -0.0054*** -0.0000 0.0002* -0.0013*** -0.0001 -0.0004***

(0.0003) (0.0001) (0.0001) (0.0003) (0.0001) (0.0001)

AbnPosts(τ)× 1
Big Size 0.0269*** -0.0012*** -0.0053*** 0.0136*** 0.0015*** 0.0003

(0.0016) (0.0004) (0.0006) (0.0014) (0.0005) (0.0008)

N 5,766,678 5,766,678 5,766,678 5,766,668 5,766,668 5,766,668

R2 0.24 0.01 0.01 0.08 0.00 0.01

Controls Yes Yes Yes Yes Yes Yes



Table 10

Abnormal Volume of options traded by Small-size Customers

This table reports the coefficients of the following regression

AbnV olumeITM−OTM
j,t =AbnPost(j, τ)t−1 + 1

Option
j,t−1 +AbnPosts(τ)t−1 × 1

Option
j,t−1 +AbnNews(j, τ)t−1

+ |Ret(j)[t−5,t−1]|+ |Ret(j)[t−60,t−1]| + V ol(j)[t−60,t−1] + αj + αt + εj,t

Where AbnV olume(j)ITM−OTM
t represents the abnormal log of the option dollar volume difference

of ITM minus OTM options for stock j at time t, relative to the average of the same variable
over the period [t − 60, t − 6]. AbnPost(j, τ)t−1 is the abnormal log number of posts average on
[t− 5, t− 1], minus the log number of posts average on [t− 60, t− 6], of underlying stock j. 1Option

j,t−1

is a dummy variable equal to one if a stock j has at least 60 posts related to option trading in the
period [t−60, t−1], or zero otherwise. AbnNews(j, τ)t−1 is the abnormal log number of Ravenpack
news average on [t− 5, t− 1], minus the log number of Ravenpack news average on [t− 60, t− 6],
related to underlying stock j. |Ret(j)[t−5,t−1]|, and |Ret(j)[t−60,t−5]| is the total return of stock j,
in absolute value, on the periods [t−5, t−1] and [t−60, t−5] respectively. Finally, V ol(j)[t−60,t−1]

is the standard deviation of the daily returns of stock j on [t − 60, t − 1]. αj and αt correspond
to stock and day fixed effects, respectively. Newey-West corrected standard errors are clustered by
stock and day, and are presented in parentheses. *, ** , and *** indicate statistical significance at
the 10%, 5%, and 1% levels, respectively. The sample period is from January 1, 2014, to December
31, 2022.

Call options Put options

Small Customers Professionals Firms Small Customers Professionals Firms

AbnPosts(τ) 0.0001 -0.0002*** -0.0002*** 0.0003 0.0002** 0.0005***

(0.0003) (0.0001) (0.0001) (0.0003) (0.0001) (0.0001)

1Option -0.0032*** 0.0001 -0.0005*** -0.0004 0.0003 -0.0016***

(0.0007) (0.0001) (0.0001) (0.0008) (0.0002) (0.0002)

AbnPosts(τ)× 1Option 0.0112*** 0.0000 -0.0010*** 0.0054*** 0.0001 0.0011***

(0.0006) (0.0001) (0.0002) (0.0006) (0.0001) (0.0002)

N 5,766,678 5,766,678 5,766,678 5,766,668 5,766,668 5,766,668

R2 0.14 0.00 0.00 0.05 0.00 0.01

Controls Yes Yes Yes Yes Yes Yes



Table 11

Dollar Return of options traded by Small-size Customers

This table reports the coefficients of the following regression

$CumPerfj,t,h = 1
AbnPost
d + αj + αt + εj,t (6)

Where $CumPerf(j,M)t,h is the sum of the performance of each option contract in millions of
dollars from t− h to t. 1AbnPost

d is dummy variable equal to one if the abnormal attention of that
stock in Stocktwits belong to the d decile of the distribution of abnormal attention for all stocks
in day t. The abnormal attention is calculated as the number of posts related to stock j over the
horizon of h days [t − h, t], minus the average on [t − 60, t − h]. αs and αt correspond to stock
and day fixed effects, respectively. Newey-West corrected standard errors are clustered by stock
and day, and are presented in parentheses. *, ** , and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively. The sample period is from January 1, 2014, to December 31,
2022.

Call options Put options

ITM OTM ATM ITM OTM ATM

1
.10 0.0149*** 0.0068*** 0.0038*** 0.0063*** 0.0045*** 0.0024***

(0.0024) (0.0012) (0.0005) (0.0023) (0.0011) (0.0004)

1
.20 0.0136*** 0.0065*** 0.0041*** 0.0078*** 0.0052*** 0.0027***

(0.0025) (0.0013) (0.0005) (0.0023) (0.0011) (0.0004)

1
.30 0.0093*** 0.0047*** 0.0034*** 0.0081*** 0.0041*** 0.0024***

(0.0025) (0.0013) (0.0006) (0.0024) (0.0011) (0.0004)

1
.40 0.0048* 0.0025* 0.0021*** 0.0058*** 0.0027*** 0.0018***

(0.0025) (0.0013) (0.0006) (0.0022) (0.0010) (0.0004)

1
.50 -0.0034 -0.0019 -0.0005 0.0031 0.0005 0.0006

(0.0026) (0.0014) (0.0006) (0.0023) (0.0011) (0.0004)

1
.60 -0.0053** -0.0022 -0.0013** 0.0019 0.0004 0.0004

(0.0026) (0.0014) (0.0006) (0.0023) (0.0011) (0.0004)

1
.70 -0.0071*** -0.0036** -0.0021*** -0.0002 -0.0005 0.0003

(0.0025) (0.0014) (0.0006) (0.0025) (0.0012) (0.0004)

1
.80 -0.0114*** -0.0051*** -0.0036*** -0.0001 -0.0008 -0.0002

(0.0029) (0.0014) (0.0006) (0.0025) (0.0011) (0.0004)

1
.90 -0.0237*** -0.0123*** -0.0078*** -0.0074*** -0.0036*** -0.0023***

(0.0032) (0.0016) (0.0007) (0.0027) (0.0013) (0.0005)

Intercept -0.0476*** -0.0194*** -0.0106*** -0.0237*** -0.0104*** -0.0054***

(0.0022) (0.0012) (0.0005) (0.0022) (0.0010) (0.0004)

N 5,966,202 5,966,202 5,966,202 5,966,030 5,966,030 5,966,030

R2 0.04 0.05 0.08 0.01 0.01 0.03



Table 12

Percentage Return options traded by Small-size Customers

This table reports the coefficients of the following regression

%CumPerf(j,M)[t,t−h] =AbnPost(j, τ)t,h + αj + αt + εj,t

Where %CumPerf(j, t,M) is the cummulative sun of percentage returns over the horizon of
h days t = [t − h, t] of stock j, for different type of moneyeness M = {ITM,OTM,ATM}.
AbnPost(j, τ)t,h) is the abnormal average of number of posts related to stock j over the horizon of
h days [t− h, t], minus the average on [t− 60, t− h]. αs and αt correspond to stock and day fixed
effects, respectively. Newey-West corrected standard errors are clustered by stock and day, and are
presented in parentheses. *, ** , and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively. The sample period is from January 1, 2014, to December 31, 2022.

Call options Put options

ITM OTM ATM ITM OTM ATM

1
.10 0.2073*** -0.5587*** -0.2499** 0.2833*** 0.3236*** 0.1132

(0.0742) (0.0896) (0.1247) (0.0465) (0.0810) (0.1353)

1
.20 0.1600** -0.4768*** -0.0649 0.2727*** 0.3267*** 0.0572

(0.0743) (0.0876) (0.1244) (0.0462) (0.0781) (0.1253)

1
.30 0.1380* -0.4176*** 0.0272 0.2739*** 0.3253*** 0.1138

(0.0750) (0.0861) (0.1208) (0.0462) (0.0766) (0.1235)

1
.40 0.1271* -0.4048*** 0.0901 0.2638*** 0.2957*** 0.1344

(0.0751) (0.0868) (0.1201) (0.0466) (0.0744) (0.1198)

1
.50 0.1024 -0.3626*** 0.3850*** 0.2561*** 0.2942*** 0.1329

(0.0760) (0.0836) (0.1193) (0.0466) (0.0753) (0.1194)

1
.60 0.0767 -0.3968*** 0.3871*** 0.2627*** 0.2939*** 0.1897

(0.0762) (0.0832) (0.1207) (0.0462) (0.0767) (0.1195)

1
.70 0.0664 -0.3614*** 0.4949*** 0.2406*** 0.2342*** 0.1304

(0.0759) (0.0854) (0.1262) (0.0468) (0.0778) (0.1193)

1
.80 0.0326 -0.4281*** 0.5308*** 0.2172*** 0.2036** 0.2690**

(0.0770) (0.0856) (0.1256) (0.0472) (0.0808) (0.1225)

1
.90 -0.2011*** -0.8354*** 0.6966*** 0.1364*** -0.0374 0.3302***

(0.0770) (0.0933) (0.1323) (0.0486) (0.0881) (0.1263)

Intercept -0.2397*** -0.6446*** -0.4164*** -0.1148** -0.1498** -0.4987***

(0.0724) (0.0812) (0.1142) (0.0447) (0.0738) (0.1144)

N 5,966,202 5,966,202 5,966,202 5,966,030 5,966,030 5,966,030

R2 0.03 0.02 0.02 0.02 0.01 0.00



A. Appendix



Table 13

Dollar Volume by Maturity and type of Investor

This table reports the daily-stock average dollar volume traded in equity options traded by
Small-size Customes, Professionals, and Firms, for different maturities. Panel A reports data
for call options, while Panel B focuses on put options. Panels C and D display the percentage
distribution of the average dollar volume reported in Panels A and B, respectively. The
sample period spans from January 1, 2014, to December 31, 2022.

C. Call Options (percentage)

Small Customers Professionals Firms

ITM OTM ATM ITM OTM ATM ITM OTM ATM

0 to 7 days 21 10 28 15 5 17 21 5 21

7 to 30 days 23 22 30 23 18 36 24 18 30

30 to 90 days 22 27 23 24 30 29 24 31 28

> 90 days 33 41 19 37 47 18 31 47 21

D. Put Options (percentage)

Small Customers Professionals Firms

ITM OTM ATM ITM OTM ATM ITM OTM ATM

0 to 7 days 26 11 33 10 4 14 14 4 18

7 to 30 days 25 24 31 18 17 33 19 15 28

30 to 90 days 21 28 21 25 28 30 24 26 27

> 90 days 28 37 15 47 51 23 43 54 27



Table 14

Dollar Volume by Market Capitalization and type of Investor

This table reports the daily-stock average dollar volume traded in equity options traded by
Smal-size Customesr, Professionals, and Firms, for stocks with different market capitaliza-
tions. Panel A reports data for call options, while Panel B focuses on put options. Panels C
and D display the percentage distribution of the average dollar volume reported in Panels A
and B, respectively. The sample period spans from January 1, 2014, to December 31, 2022.

C. Call Options (percentage)

Small Customers Professionals Firms

ITM OTM ATM ITM OTM ATM ITM OTM ATM

1 5 5 5 13 9 10 11 9 10

2 7 7 5 16 12 11 13 12 11

3 9 9 6 15 14 12 15 14 13

4 12 12 9 17 19 16 18 18 17

5 68 67 75 39 46 51 43 47 49

D. Put Options (percentage)

Small Customers Professionals Firms

ITM OTM ATM ITM OTM ATM ITM OTM ATM

1 6 5 5 12 10 10 15 11 12

2 9 6 5 14 11 11 17 11 12

3 11 8 6 15 13 12 17 14 15

4 14 11 9 20 17 16 18 18 17

5 60 70 75 38 48 50 33 46 45



Figure AA1. Average Trade and Dollar Volume of options traded by Professionals and
Firms

This figure displays in Panel A the average stock-daily trade volume and the average stock-
daily dollar volume for call and put options traded by professionals and segmented by dif-
ferent levels of moneyness. Panel B shows the average stock-daily trade volume and the
average stock-daily dollar volume for call and put options traded by firms and segmented
by different levels of moneyness. The level of moneyeness F/K is calculated as the ratio
between the Forward Price of the Stock (F) and the Strike Price of the Option Contract
(K). The sample period January 2014 to December 2022 for options of all stocks considered
in the analysis.
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Figure AA2. Why ITM options?: evidence from Stocktwits

This figure provides examples of posts from StockTwits that highlight retail investors’ dis-
cussions about their motives for trading ITM options.



Figure AA3. Kelly Criterion: evidence from Stocktwits

This figure shows some examples of posts from Stoctwits, which illustrate the disucssion of
the Kelly Crietion usage among these unsophisticated investors.



Table 15

Abnormal Volume of options traded by Professionals and Firms by Maturity

This table reports the coefficients of the following regression

AbnV olume(j)ITM−OTM
t =AbnPost(j, τ)t−1 +AbnNews(j, τ)t−1 + |Ret(j)[t−5,t−1]|

+ |Ret(j)[t−60,t−5]|+ V ol(j)[t−60,t−1] + αj + αt + εj,t

Where AbnV olume(j)ITM−OTM
t represents the abnormal log of the option dollar volume difference

of ITM minus OTM options for stock j at time t, relative to the average of the same variable over the
period [t− 60, t− 6]. AbnNews(j, τ) is the abnormal average of number of Ravenpack news related
to stock j on [t− 5, t− 1], minus the average on [t− 60, t− 6]. Ret(j)[t−5,t−1], and Ret(j)[t−10,t−5]

is the average of return of stock j on the [t − 5, t − 1] and [t − 10, t − 5], respectively. Finally,
V ol(j)[t−10,t−1] is the average of the historic volatility of stock j on [t − 10, t − 1]. αs and αt

correspond to stock and day fixed effects, respectively. Newey-West corrected standard errors are
clustered by stock and day, and are presented in parentheses. *, ** , and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January 1,
2014, to December 31, 2022.

A. Professionals

Call options Put options

1 to 7 days 7 to 30 days 30 to 90 days 90 days 1 to 7 days 7 to 30 days 30 to 90 days 90 days

AbnPosts(τ) 0.0004*** 0.0000 -0.0001*** -0.0002*** 0.0003*** 0.0002*** 0.0000 -0.0000

(0.0001) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0001) (0.0000)

N 1,730,113 4,634,609 5,541,641 5,762,086 1,730,014 4,634,780 5,540,910 5,759,148

R2(%) 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Controls Yes Yes Yes Yes Yes Yes Yes Yes

B. Firms
Call options Put options

1 to 7 days 7 to 30 days 30 to 90 days 90 days 1 to 7 days 7 to 30 days 30 to 90 days 90 days

AbnPosts(τ) 0.0003*** -0.0000 -0.0004*** -0.0006*** 0.0009*** 0.0005*** 0.0001 -0.0001

(0.0001) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

N 1,730,113 4,634,609 5,541,641 5,762,086 1,730,014 4,634,780 5,540,910 5,759,148

R2(%) 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00

Controls Yes Yes Yes Yes Yes Yes Yes Yes



A.1. Proofs of Propositions

A.1.1. Maturity

Proposition 4 For ITM options, when FT − K > 0, then ∂f∗

∂T
< 0 for all strike

prices K < S0 exp
−(r+σ2/2)T . That is, there is a negative relationship between the

optimal fraction of investment and the maturity of ITM options.

Proof: I start by examining the partial derivative of f ∗ with respect to time to maturity T :

∂f ∗

∂T
=
−(N (d1)− 1)∂C(S0,T )

∂T
+ (K − FT − C(S0, T ))Φ(d1)

∂d1
∂T

K − FT

Where ∂C(S0,T )
∂T

represents the sensitivity of the call option value to the passage of time. Since

∂C(S0,T )
∂T

= −Θ = rK exprT N (d2) +
σ

2
√
T
> 0, I have −(N (d1) − 1)∂C(S0,T )

∂T
> 0, given that

N (d1) ≤ 1.
For ITM options, FT − K > 0 and the call price C(S0, T ) ≥ 0, leading to K − FT −

C(S0, T ) ≤ 0. Additionally, (K−FT−C(S0, T ))Φ(d1) ≤ 0 since Φ(d1) > 0. Now, considering
∂d1
∂T

, there are two possibilities:

• ∂d1
∂T

=
T (2r+σ2)−2log(S0

K )
4T 3/2σ

> 0 ⇐⇒ T (2r + σ2) > 2log
(
S0

K

)
⇐⇒ K > S0 exp

−T (r+σ2

2
)

• ∂d1
∂T

=
T (2r+σ2)−2log(S0

K )
4T 3/2σ

< 0 ⇐⇒ T (2r + σ2) < 2log
(
S0

K

)
⇐⇒ K < S0 exp

−T (r+σ2

2
)

Given that the condition K < S0 exp
−T (r+σ2

2
) encompasses a wider range of strike prices

of ITM options, especially for deep in-the-money options, ∂d1
∂T

< 0. Therefore, (K − FT −
C(S0, T ))Φ(d1)

∂d1
∂T

> 0, leading to ∂f∗

∂T
< 0. Thus, the optimal fraction of investment de-

creases with increasing maturity of ITM options.

Proposition 5 For OTM options, when FT − K < 0, then ∂f∗

∂T
> 0 for all strick

prices K > C(S0, T ) + FT . That is, there is a positive relationship between the
optimal fraction of investment and the maturity of OTM options.

Proof: I begin by examining the partial derivative of f ∗ with respect to time to maturity T :

∂f ∗

∂T
=
−(N (d1)− 1)∂C(S0,T )

∂T
+ (K − FT − C(S0, T ))Φ(d1)

∂d1
∂T

K − FT

Where ∂C(S0,T )
∂T

represents the sensitivity of the call option value to the passage of time. Since

∂C(S0,T )
∂T

= −Θ = rK exprT N (d2) +
σ

2
√
T
> 0, I have −(N (d1) − 1)∂C(S0,T )

∂T
> 0, given that

N (d1) ≤ 1.
Considering ∂d1

∂T
, there is two possibilities:



• ∂d1
∂T

=
T (2r+σ2)−2log(S0

K )
4T 3/2σ

> 0 ⇐⇒ T (2r + σ2) > 2log
(
S0

K

)
⇐⇒ K > S0 exp

−T (r+σ2

2
)

• ∂d1
∂T

=
T (2r+σ2)−2log(S0

K )
4T 3/2σ

< 0 ⇐⇒ T (2r + σ2) < 2log
(
S0

K

)
⇐⇒ K < S0 exp

−T (r+σ2

2
)

For OTM options, K − FT > 0, which means K > FT > S0 > S0 exp
−T (r+σ2

2
). Therefore

∂d1
∂T

> 0 and Φ(d1)
∂d1
∂T

> 0, since Φ(d1) > 0.
Regarding K − FT − C(S0, T ), there are two possibilities:

• K − FT − C(S0, T ) > 0 ⇐⇒ K > FT + C(S0, T )

• K − FT − C(S0, T ) < 0 ⇐⇒ FT < K < FT + C(S0, T )

Given that the condition K > FT + C(S0, T ) encompasses a wider range of strike prices
of OTM options, especially for deep out-the-money options, then K − FT − C(S0, T ) > 0,
leading to ∂f∗

∂T
> 0. Thus, the optimal fraction of investment increases with increasing

maturity of ITM options.

A.1.2. Call Volatility

Proposition 6 For ITM options, when FT − K > 0, then ∂f∗

∂σ
> 0, for all strike

prices K < S exp(r−σ2/2)T and σ2/2 > r. That is, there is a negative relationship
between the optimal fraction of investment and the volatiity of the stock for
ITM options.

Proof: I start by examining the partial derivative of f ∗ with respect to time to volatility σ:

∂f ∗

∂σ
=
−(N (d1)− 1)∂C(S0,T )

∂σ
+ (K − FT − C(S0, T ))Φ(d1)

∂d1
∂σ

K − FT

Where ∂C(S0,T )
∂σ

represents the sensitivity of the call option price with respect to the volatility

of the underlying stock. Since ∂C(S0,T )
∂σ

) = ν =
√
TS0Φ(d1) > 0, then −(N (d1)−1)∂C(S0,T )

∂σ
>

0, given that N (d1) ≤ 1 and Φ(d1) > 0.
For ITM options, FT − K > 0 and the call price C(S0, T ) ≥ 0, leading to K − FT −

C(S0, T ) ≤ 0. Additionally, (K − FT −C(S0, T ))Φ(d1) ≤ 0. Now, considering ∂d1
∂σ

, there are
two possibilities:

• ∂d1
∂σ

=
T (−2r+σ2)−2log(S0

K )
2
√
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K

)
⇐⇒ K > S0 exp

T (r−σ2

2
)

• ∂d1
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=
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K )
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√
Tσ2 < 0 ⇐⇒ T (−2r + σ2) > 2log

(
S0

K

)
⇐⇒ K < S0 exp

T (r−σ2

2
)



Given that the condition K < S0 exp
T (r−σ2

2
) encompasses a wider range of strike prices

of ITM options, especially for deep in-the-money options, ∂d1
∂σ

< 0. Therefore, (K − FT −
C(S0, T ))Φ(d1)

∂d1
∂σ

> 0, leading to ∂f∗

∂σ
< 0. Thus, the optimal fraction of investment de-

creases with increasing volatility of ITM options.

Proposition 7 For OTM options, when FT −K > 0, then ∂f∗

∂σ
> 0, for all strike

prices K > C(S0, T ) + FT and σ2/2 > r. That is, there is a positive relationship
between the optimal fraction of investment and the volatility of OTM options.

Proof: I begin by examining the partial derivative of f ∗ with respect to time to volatility σ:

∂f ∗

∂σ
=
−(N (d1)− 1)∂C(S0,T )

∂σ
+ (K − FT − C(S0, T ))Φ(d1)

∂d1
∂σ

K − FT

Where ∂C(S0,T )
∂σ

represents the sensitivity of the call option price with respect to the volatility

of the underlying stock. Since ∂C(S0,T )
∂σ

= ν =
√
TS0Φ(d1) > 0, I have −(N (d1)−1)∂C(S0,T )

∂σ
>

0, given that N (d1) ≤ 1.
Considering ∂d1

∂σ
, there is two possibilities:

• ∂d1
∂σ

=
T (−2r+σ2)−2log(S0

K )
2
√
Tσ2 > 0 ⇐⇒ T (−2r + σ2) > 2log

(
S0
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)
⇐⇒ K > S0 exp

T (r−σ2

2
)

• ∂d1
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=
T (−2r+σ2)−2log(S0

K )
2
√
Tσ2 < 0 ⇐⇒ T (−2r + σ2) > 2log

(
S0
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)
⇐⇒ K < S0 exp

T (r−σ2

2
)

For OTM options, K − FT > 0, which means K > FT > S0 > S0 exp
T (r−σ2

2
). Therefore

∂d1
∂σ

> 0 and Φ(d1)
∂d1
∂σ

> 0, since Φ(d1) > 0.
Regarding K − FT − C(S0, T ), there are two possibilities:

• K − FT − C(S0, T ) > 0 ⇐⇒ K > FT + C(S0, T )

• K − FT − C(S0, T ) < 0 ⇐⇒ FT < K < FT + C(S0, T )

Given that the condition K > FT + C(S0, T ) encompasses a wider range of strike prices
of OTM options, especially for deep out-the-money options, then K − FT − C(S0, T ) > 0,
leading to ∂f∗

∂σ
> 0. Thus, the optimal fraction of investment increases with increasing

volatility of ITM options.



A.1.3. Put Volatility

The optimal betting fraction, f ∗, is:

f ∗ =
p(1 + b)− 1

b
Assuming Black and Scholes, we can implement these framework in the context of options.
The bet size will be determined by the price paid for the option. In the case of call options,
this will be P (S0, T ), where S0 is the stock price at time t = 0 and T is the maturity of
the option. The gain per unit bet is the profit earned when the option is exercised, for Call
options is K − FT , where FT = S0 exp

rT is forward stock price maturing at t = T assuming
a risk free r, and K is the strike price of the option. Therefore for Call options b will be:

b =
K − FT

P (S0, T )

Furtheremore, the probability of winning the bet p, for options can be interpreted as the
probability of exercising the option, which is captured by the Delta of the option ∆ and it
is defined as ∆ = N(d1). Thus, plugging all numbers in f ∗:

f ∗ =
−∆

(
1 + K−FT

P (S0,T )

)
− 1

K−FT

P (S0,T )

=
(1−N(d1))

(
1 + K−FT

P (S0,T )

)
− 1

K−FT

P (S0,T )

= N(d1)−(1−N(d1))
C(S0, T )

FT −K

Proposition 8 For ITM options, when K − FT > 0, then ∂f∗

∂σ
> 0, for all strike

prices K < S exp(r−σ2/2)T and σ2/2 > r. That is, there is a negative relationship
between the optimal fraction of investment and the volatiity of the stock for
ITM options.

Proof: I start by examining the partial derivative of f ∗ with respect to time to volatility σ:

∂f ∗

∂σ
=
−(N (d1)− 1)∂C(S0,T )

∂σ
+ (K − FT − C(S0, T ))Φ(d1)

∂d1
∂σ

K − FT

Where ∂C(S0,T )
∂σ

represents the sensitivity of the call option price with respect to the volatility

of the underlying stock. Since ∂C(S0,T )
∂σ

) = ν =
√
TS0Φ(d1) > 0, then −(N (d1)−1)∂C(S0,T )

∂σ
>

0, given that N (d1) ≤ 1 and Φ(d1) > 0.
For ITM options, FT − K > 0 and the call price C(S0, T ) ≥ 0, leading to K − FT −

C(S0, T ) ≤ 0. Additionally, (K − FT −C(S0, T ))Φ(d1) ≤ 0. Now, considering ∂d1
∂σ

, there are
two possibilities:



• ∂d1
∂σ

=
T (−2r+σ2)−2log(S0

K )
2
√
Tσ2 > 0 ⇐⇒ T (−2r + σ2) > 2log

(
S0

K

)
⇐⇒ K > S0 exp

T (r−σ2

2
)

• ∂d1
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=
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Tσ2 < 0 ⇐⇒ T (−2r + σ2) > 2log

(
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)
⇐⇒ K < S0 exp

T (r−σ2

2
)

Given that the condition K < S0 exp
T (r−σ2

2
) encompasses a wider range of strike prices

of ITM options, especially for deep in-the-money options, ∂d1
∂σ

< 0. Therefore, (K − FT −
C(S0, T ))Φ(d1)

∂d1
∂σ

> 0, leading to ∂f∗

∂σ
< 0. Thus, the optimal fraction of investment de-

creases with increasing volatility of ITM options.

Proposition 9 For OTM options, when FT −K > 0, then ∂f∗

∂σ
> 0, for all strike

prices K > C(S0, T ) + FT and σ2/2 > r. That is, there is a positive relationship
between the optimal fraction of investment and the volatility of OTM options.

Proof: I begin by examining the partial derivative of f ∗ with respect to time to volatility σ:

∂f ∗

∂σ
=
−(N (d1)− 1)∂C(S0,T )

∂σ
+ (K − FT − C(S0, T ))Φ(d1)

∂d1
∂σ

K − FT

Where ∂C(S0,T )
∂σ

represents the sensitivity of the call option price with respect to the volatility

of the underlying stock. Since ∂C(S0,T )
∂σ

= ν =
√
TS0Φ(d1) > 0, I have −(N (d1)−1)∂C(S0,T )

∂σ
>

0, given that N (d1) ≤ 1.
Considering ∂d1

∂σ
, there is two possibilities:

• ∂d1
∂σ

=
T (−2r+σ2)−2log(S0

K )
2
√
Tσ2 > 0 ⇐⇒ T (−2r + σ2) > 2log

(
S0

K

)
⇐⇒ K > S0 exp

T (r−σ2

2
)

• ∂d1
∂σ

=
T (−2r+σ2)−2log(S0

K )
2
√
Tσ2 < 0 ⇐⇒ T (−2r + σ2) > 2log

(
S0

K

)
⇐⇒ K < S0 exp

T (r−σ2

2
)

For OTM options, K − FT > 0, which means K > FT > S0 > S0 exp
T (r−σ2

2
). Therefore

∂d1
∂σ

> 0 and Φ(d1)
∂d1
∂σ

> 0, since Φ(d1) > 0.
Regarding K − FT − C(S0, T ), there are two possibilities:

• K − FT − C(S0, T ) > 0 ⇐⇒ K > FT + C(S0, T )

• K − FT − C(S0, T ) < 0 ⇐⇒ FT < K < FT + C(S0, T )

Given that the condition K > FT + C(S0, T ) encompasses a wider range of strike prices
of OTM options, especially for deep out-the-money options, then K − FT − C(S0, T ) > 0,
leading to ∂f∗

∂σ
> 0. Thus, the optimal fraction of investment increases with increasing

volatility of ITM options.
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