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Abstract— At the time of a customer order, the e-tailer assigns customer. The promise-to-ship date is the date by which-the e
the order to one or more of its order fulfillment centers, and/or to  tajler promises to ship the order from the warehouse(serAft
drop shippers, so as to minimize procurement and transportation the e-tailer assigns the order, the order enters the pickiege
costs, based on the available current information. However this T o .
assignment is necessarily myopic as it cannot account for all at the Warghousg. The order mlght_ walit six to eighteen h_ours
future events, such as Subsequent customer orders or inve"’y) before the items In the Order are pICked and assembled Into a
replenishments. We examine the potential benefits from period- shipment that is then given to a third party carrier to detive
ically re-evaluating these real-time order-assignment decisions. the package(s) to the customer location.

We construct near-optimal heuristics for the re-assignment fora We present Example 1 to illustrate the real-time assignment

large set of customer orders with the objective to minimize the decisi S | d Chi d
total number of shipments. We investigate how best to implement J€CISION. Suppose a customer located at Chicago orders one

these heuristics for a rolling horizon, and discuss the effect of

demand correlation, customer order size, and the number of Orders Customer Location  Items
customer orders on the nature of the heuristics. Finally, we :61' T T T Tchicaco T T T1icot
present potential saving opportunities by testing the heuristics = = = < —————————_ T T T T
on sets of order data from a major e-tailer. (o2 BOSTON 1CD, 1BOOK |
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I. INTRODUCTION !
-
E-tailers pride themselves in having a universal seleatifon 1 0 BOOK
products and in providing a very customer-friendly shogpin BOOK

experience. In this increasingly crowded online marketpla

with few barriers to entry, there is no doubt that the succegg ;.
or dominance of an e-tailer depends on an efficient customer
fulfillment process. Because of the scale, complexity of the
electronic fulfillment systems and the overwhelming amouftD, as indicated in the dash box in Figure 1. In real time,
of available data, making sound fulfillment decisions reemi the e-tailer searches for its available inventory in all tf i
both good operating tactics and sophisticated tools that a¥arehouses: Warehouse 1 near New York and Warehouse 2
based on simple ideas. We attempt to provide such tools @i San Francisco. Both warehouses have one unit of this
insights in an e-tailing setting by investigating the teati CD available, and the e-tailer will make the assignment to
decision of assigning each customer order to warehouse{8jimize transportation costs. In this case, it is cheaper t
so the e-tailer can Sh|p the items to the customer. Shlp the CD from New York, so the e-tailer assigns the CD

When a customer p|aces an order on an e-tailer's Websiif@{entory in Warehouse 1 to this order. Three seconds |atel’,
the e-tailer, in real time, searches for available fulfilihe @ customer from Boston orders the same CD and a book.
options from its order fulfillment centers (warehouses) cruPpPose the book is only available from Warehouse 1. The
drop-shippers. The e-tailer assigns the order to one or m&@y possible assignment for the e-tailer now, without jsigc
warehouses virtually, mainly based on the transportatist ¢ an inventory replenishment order, is to fulfill the second
of shipping the order from the warehouse(s) to the custonfider with two shipments: Warehouse 2 can ship the CD and
location and on the current warehouse inventory avaitgbili Warehouse 1 can ship the book to the second customer. We
Depending on the inventory availability and customer prefiave a total of three shipments for the two orders.
erences, the e-tailer then quotes a promise-to-ship dateeto In the transportation cost for shipping a package, the fixed

cost component is very significant. We display the current
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Example 1 - Real-time assignments result in three shifgmen
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Fig. 2. UPS Ground commercial rates within the US continent Fig. 4. Example 2 - Read-time assignments result in 6 shipments.

majority of the shipping costs. As a consequence, reduciaggh CDs in stock. The second order consists of the book
the number of shipments is a very good proxy for minimizingnd the toy. The e-tailer assigns the book to warehouse 2 and
the transportation costs in the e-tailing setting. For gXam the toy to W3, because the book is not yet in inventory at
consider an order that weights about eight pounds. It isg#Tea\w3. Suppose an inventory replenishment of books is received
to ship a single package of eight pounds to Zone 8 than to ship\w3 before customer O3 arrives. The e-tailer then assigns
two four-pound packages to Zone 2. The difference is evelistomer O3 to W3. Finally, there are two shipments for
more pronounced at smaller weights. For example, shippig@stomer O4: the CD and book from W1 and the camera and
a two-pound package and a six-pound package to Zonep¥D from W2. Thus, there are six shipments for the four
costs $10.60, while shipping one eight-pound package t@Zagrders, and it may not be immediately apparent whether or
8 costs $10.05. For items that can typically be fit into thgot we can shuffle the assignments to reduce the number of

few standard packages, their weight is at most a few poundgipments. However, in Figure 5, we show that we can reduce
e.g., books, CDs, DVDs. Therefore, the e-tailer minimizes i

transportation costs by minimizing the number of shipments W1 W2 W3
If we consider only the two orders in Example 1, we can POL I P
reduce the number of shipments to two as illustrated in Eigur i 1
. . . - = r - oy
2 by changing the order-warehouse assignments. We assign ; BOOK 1 TOoY
the first customer order to Warehouse 2 and the second to = "I | 1
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- Fig. 5. Example 2 - Re-evaluating real-time assignments reduogber of
1 shipments from 6 to 4 .
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the number of shipments from six to four, which is clearly the
Fig. 3. Example 1 - Re-evaluating real-time assignments reduo®er of past we can do
shipments to two. i, . - .
We show with examples that the real-time decision is

necessarily myopic because the e-tailer does not anticipat
Example 1 is a bit extreme and the modification to thany future customer orders or inventory replenishment. The
initial assignments is very straightforward. To apprexidte real-time assignment is myopic in practice because thdes-ta
difficulty and the subtlety of the problem, we discuss Examplivants to reserve the inventory for the customer, then inform
2 next. In Figure 4, we have four customer orders, labeled & customers with confidence that inventory is availabl an
01, 02, 03, 04, and three warehouses, labeled as W1, Wat the order can be fulfilled by the promise-to-ship date.
W3. The warehouses carry five SKU’s, with the names CDhe real-time assignment is myopic also because of two main
book, toy, camera, and DVD. . The first customer order is fahallenges. An e-tailer might have a half a million SKUs B it
the CD, and the e-tailer assigns it to W2, possibly because tharehouses; it is very difficult to develop accurate warskeu
first customer is nearest to W2 or W2 is the only warehousevel demand forecasts for orders that consist of from one to



twenty distinct SKUs. The second challenge is the unrediakihave a set-packing problem, where some of the items in an
future inventory replenishment information. We conjeettitat order may not be assigned to any warehouse. We start with
we can reduce the total transportation cost of shippingrerdesome notations.

from warehouses by re-evaluating the real-time assignmer%

decisions, subject to the constraint that there is no valanf index for warehouses

the promise-to-sip date commitment for any customer order. ¢ index for SKU's, and|/| = m.
This shuffling of assignments is also practically feasibleN ={1,...,n}, a collection of all possible subsets of
Even when all items in an order are available at the warehouse the order, i.e.(y, | € N, is thel" subset of the order

the order may wait 8 to 16 hours until the order is release to

be picked and sent for shipping. If one or more of the items in am by n matrix such that; is the number of units

the order is not available, then the rest of the order is veser of item 4 included in subset’;
and waits until the missing items arrive. By re-evaluatihng t d; units of SKU+ in the order
real-time decision, the e-tailer can also afford more dewis . an by 1 vector of 1's

making time. We pose a problem to re-evaluate the real-time o . .
decisions. We consider the queuenof-yet-picked customers ¢~ 1 if subsetC; is shipped

orders and their real-time warehouse assignments,and we#e = 1 if subsetC; is shipped out of warehouse
evaluate these real-time decisions to see if we can redugg inventory units of SKU; available at warehouse

the smpplng cost without violating the proml_se-to-shlrteda We denote the following formulation of assigning an order
commitments for these orders. The not-yet-picked ordezs Al rehouses 2B

the orders that have not yet been released to be picked at each '

warehouse. We take inventory availability and the reaktim min Zylk

guoted promise-to-ship dates as given. i,k

. We will shqw ip 'Iater section; that this snapshot optimiza- St Zaiz o =d;, Vi 1)
tion problem is difficulty theoretically (belong to the NR+d -

complexity class) and in practice. For now, exact methods

cannot solve realistically dimensioned cases. In the lmgai Zym =@, Vi @
setting, the problem size is also especially large. For &n of 4§

season snapshot at a large e-tailer, there are 1 millionrorde Zau Yk < Sik, V i,k (3
with 2 to 3 million units waiting to be picked. There are !

up to 10 warehouses. The total number of SKUs in those x, yie €{0,1}, VI, k

orders ranges from 500,000 to 800,000. In the peak seaseBnstraint (1) guarantees that the number of units for each
the number of orders can reach three or five times the numkgty in the order is shipped. This implies that all shipped
in the off-season. o . subsets are disjoint and their union covers the entire areler
Therefore, we develop efficient and easy to implement SUpnstraint (2) guarantees subsgtto be shipped from only
optimal heuristics to solve the re-evaluation problem.eBiv one warehouse, i€, is shipped, and zero warehouse if not
the real-ime assignment decisions, we take the naturél pghipped. Constraint (3) is a supply constraint: the amotint o
to construct an improvement heuristic that starts with aifd@ sy ; shipped from warehouse cannot exceed the supply
solution and iteratively finds better solutions. We alsov@er of skuy ; in warehouse.
bounds to determine the sub-optimality of our heuristics. Suppose we substitute indexfor ({,%), and restrict each
In the following sections, we discuss the problem formulasky to have at most one unit in the ordel; & 1) and allow

tion and our heuristic solution approach. We also summariggpply to be infinite. This special case of probléhis a set
some computational experiments on sets of real data fromyatitioning problem:

global e-tailer.
min Z Yr
vr

Il. PROBLEM FORMULATION
st. Ay=e,

We present two formulations of the re-evaluation problem,
where one is based on the set partitioning problem, and anoth yr € {01}
is a network design formulation. Both are formulated asdargvhich is NP-hard in complexity. Therefore, the real-time
scale integer or mixed-integer problems. Both formulatioassignment problem of an order is NP-hard by restriction.
shed light on the underlying structure and difficulty of the Now we examine all orders in the not-yet-picked queue. We
problem. modify the previous notations and introduce new notations.

j index for customer orders] is the order set.
I set of unique SKU’s in the order séf,| = v.
number of SKU’s in orderj

A. Formulation 1

For this set-partition based formulation, we first examine
the real-time assignment decision for an order. For now, we M
assume that we have enough inventory across warehouses inV; = {1,....,n;},a subset collection of order
the network to satisfy the order. Without this assumptio, w N ={Ny,...,N;j,....,}



B

y awv by n; matrix s. t. b; is the units of decompose the problem into a transportation problem by SKU,

and there exists an optimal integer solution in transportat
problems. Constraints (7) assure that the amount of each SKU
Similarly, we define sub-matrixd;, [m;,n;], for the j"*  shipped from each warehouse does not exceed the supply.

SKU i in orderj included in its/th subset

order. LetA ,[m,n], be Constraints (8) assure that the demand is met for each SKU
A, in each order. ProblenMZP has.JK binary variables and
A, IJK continuous variables. It ha + I.J + I[JK number of
A= o constraints. This formulation has linear number of costsa

A ’ and variables in the input problem data. This fixed-charge

multi-commodity flow problem is NP-hard in complexity and
currently intractable empirically [3].
wherem = 3 ;. ;m; andn = } .., n; is the number of By examining the two formulations, we show that we need
subsets for all orders. We also define mattiv, n], to be  efficient and easy to implement heuristics to solve the Sratps

B=[B By, ... B ...]. problem.
Here problenfP still applies, but with some modification. We . .
call the re-evaluation problem a3: C. Literature Review
) There are two clusters of literature that are most relevant t
B Z Yik our problem. The first is the literature on network desigrbpro
ot X;: d @ Iem_s. The second is the literature on local search algosithm
o a wide class of improvement algorithms.
r=Yex (5)  The literature on network design problems is directly re-
BY <s (6) lated to the second formulation of our problem. Most of the
2,y € {0,1}, VI, k. literature is on the basic fixed-charge design model. Daffer

from our problem, the basic fixed-charge design model has a
Clearly, problent is special case of probled. ProblemQ  single set of source and sink for each commodity. Magnanti
is also NP-hard. The total number of binary decision vagabl and Wong [5] have shown that the basic model is very flexible
n+nk. The number of type (1) constraintns, the number of and contains a number of well known network optimization
type (2) constraint i, and the number of type (3) constraintyroblems as special cases. Even many of the special cases
is vK. Notice n could be exponential in the input data. Ine.g., the uncapacitated plant location problem) are kntown
problemQ, we have an exponential number of binary variablge difficult to solve , so is the general fixed-charge design

and constraints. model. In addition to the theoretical arguments, subsdhnti
empirical evidence also confirms the difficulty of the prable
B. Formulation 2 on large-scale instances: [4], [7], [3]. Judging by the sife

The re-evaluation problem can also be formulated asthe instance solved in the current literature, none areedios
network design problem, specially, a fixed-charge mulfhe scale of our problem.

commodity flow problem [2]. In addition to the previously There is also a rich group of literature on local search or
defined notation. we redefine the decision variables. neighborhood search. This set of literature is the inspinatf

_ our proposed heuristics. Ahuja, Ergun, Orlin, and Punnen pr
z%,  units of SKU: shipped from warehouse to customefjide a comprehensive survey on very large-scale neighborho
Yik indicator of a shipment fronk to j search techniques [1]. Talluri [6] considers a fleet assgmm

problem, which can be modelled as an integer multicommodity
We also denote sei; to be the set of warehouses that carmyq,, nroblem subject to side constraints where each commod-
SKU 1 inventory, J; to be the set of customer orders thaly efers to a fleet type. He considers a given solution as
contain nonzero units O,f SKu ) restricted to two fleet types only, and looks for improversent

We denote the following formulation as{ZP. that can be obtained by swapping a number of flights between

min Z Yik the two fleet types.
gk
s. t. > iy =si, Viel kek; ) I1l. COMPLEX SYSTEM PROPERTIES
ek ‘ . In solving the problem, we understand that specially taior
Z riy,=d;, Yiel, jeJ; (8) heuristics are more likely to out perform any general heicss
ke K (i) To find any solution tailored to the problem structure, we

0<al, <diyp, Viel, jedi, ke K, (9) must exfamine t_he problem data cgrgfully. In this section, we
. summarize the important characteristics of the custonuerer

vik € {01}, Vi, k (10) and the real-time assignments.

Notice that a commodity is a SKU. Variabieis a continuous  To facilitate the presentation, we introduce the following

variable here because for any given choiceypfwe can definitions.



o A single order is a customer order that consists of exactlifhe transportation problem allocates the supply of the SKU

one unit of one SKU. at the supply nodes (the warehouses) to the demand nodes
o A multi order is a customer order that consists of moréorders that include the SKU). We illustrate this problenteda
than one SKU or multiple units of one SKU. in the section. Thus, with these ideas, we state the hauristi

o A split order is a customer order split over warehouseas the following:
in the real-time assignment, i.e., orders with more than
n hioment. For SKUi: 1 =1— N _
0 e ship .e . . . . 1.  Construct transportation problem for SKU
« A single shipment is a one-unit shipment of a split order. 5. sove transportation problein

« A double shipment is a two-unit shipment of a split order. 3.  Update all affected orders

We examine a number of snapshot data sets in the off season
from a large e-tailer. There are close to 1 million orderswgit ~ WhereN is the number of SKU's. We only consider SKUs
to 3 million units in the not-yet-picked queue for the snagshthat have single orders or uncommitted inventory, as well
data. Typically, 30% to 40% of the orders are multi orderse TS Split orders with single shipments that consist of SKU
size of multi orders tends to follow a geometric distribatio ¢ Starting with a sequence of SKU's, we construct a max-
with the average size being around 3 to 4 units in each muffization transportation problem for each SKU. After solyi
order. a transportation problem, we update the affected ordeis, an
The real-time assignments splits about 15% of the mugPntinue with the next SKU. We terminate at the end of the
orders. The number of shipments in each split order is tw}<U sequence.
or three shipments with few exceptions. There is at least one/Vé start with an example to describe the transportation
single shipment in more than 80% of the split orders. Ov@foblem. We consider a batch of orders listed in Figure 6.
90% of the split orders have at least one single shipment \3fe construct the corresponding maximization transpamai

one double shipment.
To investigate whether the problem can be decomposed into Wi W2 W3

a number of smaller problems, we examined the connectivity

of the order-SKU graph constructed for the snapshot of the r \7
not-yet-picked queue . There is one node for each SKU and . -

w-IEEERED GIEEEEEEEY
-

we connect two SKU nodes when there exists an order that , Y & . uv -

includes both SKUs. We found that there exists one very large ey rmm
component in the graph, containing the majority of the SKU’s LEGEND
Furthermore, any removal of small subsets of SKU’s does not () o 7T o2 CTY o3

change the connectivity of the graph. Therefore, we do not
see a clear way to decompose the problem by consideringit 6 Real-time assignments
limited number of orders or SKUs.
problem for SKU Y in Figure 7. Each warehouse represents a
IV. HEURISTICAPPROACH

In solving the optimization problem, we start with a feasibl 1- @ @ —1
solution, i.e., the real-time assignments. It seems nlatora
focus on an improvement algorithm, by which we iteratively
create better solutions. The focus on improvement algosth 1- @ 1

is also driven by practical concerns. Improvement algorgh

generate a feasible solution at every iteration. After each @

. . : 1— -1

iteration, we can implement the recommended changes to the

current (incumbent) assignments to get an improved order _

assignment. This facilitates greatly the implementatibthis 9 7+ Transportation problem for SKU Y.

solution approach, since we always have a feasible solution

even if there were a sudden termination of the algorithm. supply node, and each order with a single shipment of SKU
One key idea for our heuristic is to consider how to use thérepresents a demand node. The supply at each supply node

single orders to fix the split orders. The motivation for tisis is the number of units of SKU Y that are available at the

twofold. First, single orders always entail a single shipti®it warehouse for re-assignment. The demand at each demand

are very flexible in their assignment. Second, the vast ritgjornode is the number of units of SKU Y in the order. A unit

of split orders include a single shipment. By re-assigninga flow from supply nodek to demand nodej signifies

single order from warehouse A to warehouse B, we free tipat warehousé: ships a unit of SKU Y to fill orderj’s

a unit of inventory at warehouse A that might be used tequirement.. LetP(;j) be the set of warehouses such that,

avoid a split order. Our first example illustrates such a atk € P(j), shipping the SKU Y from warehouse reduces

instance. A second key idea is to consider one SKU at a tingsplit in orderj. That is, there will be one less shipment if

For each SKU we can construct and solve a transportatisarehouse: supplies the SKU Y or ordef. The arc cost for

problem that attempts to reduce the number of split ordeesc (k,j),Vk € P(j) is 1, signifying that a unit flow on this




arc results in one less shipment. The arc cost is zero for all 0

other arcs. In Figure 7P(1) = 3, P(2) = 0, P(3) = 2, and so T \ d
only arcs (2, 3) and (3, 1) (the dark arcs) have a cost of 1. 1=
By inspection, we see that the optimal solution is to send S
one unit of flow along arcs(1,2),(2,3) and (3,1). The ot
optimal solution corresponds to the results in Figure 8. We
W1 W2 W3 ; t | —=d,
: Y St -
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Fig. 8. Re-evaluation reduces number of shipments from 5 to 3.

Fig. 9. Transportation problem for each SKU

reduce the number of shipments in the three orders fromh5Figure 10, for each demand blo¢kwe have one node for
to 3. We can also see the cyclic exchanges that are requif@fh Single shipment ordef;, j = 1,...,m;, and we can
to implement the solution: we need to re-assign the Sku $roup all of the single orders into one node.

inventory at W1, which had been committed to O3 in real
time, to O2; we then assign the inventory from W3, which - dy
had been for O2, to O1; and finally we assign the inventory

from W2 to O3 That is, by implementing the cyclic exchange .
of SKU Y according to 03— 02 — 01 — 03, we arrive at 1
the solution in Figure 8.
ORERY.
A. Generalized transportation problem
The actual transportation problem that we need to solve is @ 1

a bit more complex. First, we need to take into consideration

the promise-to-ship dates quoted by the e-tailer at the tirnig. 10. Demand block in the transportation problem for a SKU

of the order placement. Second, we also need to differentiat

whether the unit of inventory assigned to the customer orderArcs: We permit arcs from the nodes in supply blogkto

is physically in the warehouse or on order. To account for ttiee demand nodes in demand blagk vV ¢; > t,.

time dimension, we creat& time buckets. In the context of ~Costs: The cost of all arcs to a single order demand node
the transportation problem for each SKU, we need to credee all zero, since there is no reduction in shipments from
supply and demand nodes for each time bucket. We hav@ry re-assignment of a single order. The cost of an arcs from
supply node for each warehouse for each time bucket. W "profitable” warehouse k to a single shipment ngdis
have a demand node for each order, grouped according tods, for element of’(;j) for SKU i, since this will result in a
promise-to-ship date. All promise-to-ship dates greatentor reduction of one shipment. Otherwise the arc cost is zero for
equal to7 days away from the current date are grouped il arcs to a single shipment noge

the 7th category. Since we may be solving the re-evaluation

problem periodically, those orders will eventually be ire th V. RESULTS

specific day category. We have implemented the heuristics on several real data sets
We formulate a transportation problem for each SKU as from a large e-tailer. The data sets consistently have 8069

Figure 9. orders and 400K SKU's. In each test set there has been on the
The details of the transportation problems are as the fellowrder of 16,000 split orders for consideration. For pradtic

ing. reasons, we examine only a subset of all split orders. We

Supply:We haveT + 1 supply blocks, where each blockexclude some split orders because any re-assignment would
contains a supply node for each warehouse. The suppiake the customer worse off. We exclude some other split
available at each warehouse for the current time blggk, orders since the items are too large to be fit into the standard
reflects the on-hand inventory, whereas the supply for éutupackages.
time blocks,s;, t > 0, is the on-order inventory that will As one illustration, the 16000 split orders require 33,200
arrive during the time block. shipments; that is these split orders entail 17,200 spliextra

Demand:We havel demand blocks, one for each shippinghipments.
date category. Each order is allocated to a demand block acBy application of the heuristic, we are able to reduce about
cording to thepromise-to-ship date for the order. As illustrated 40% of the splits. That Is, we can reduce the number of



shipments by approximately 8,000, from 33,200 shipments to
25,200 shipments. The total transportation cost savings ca
be in the range of $20, 000 if we save $2 to $3 for every
split we reduce. As the not-yet-picked queue corresponds to
orders for one or two days, we expect that we can repeat this
saving by re-solving the problem every one or two days. Thus,
we conjecture that there is a significant opportunity fortcos
reduction

Our heuristic is relatively easy to implement, as each
iteration translates into a series of cyclic exchanges gmon
a limited set of orders. We can feed these exchanges into the
e-tailer’s existing order-management systems, and as aueh
optimistic that implementation is possible.

We conclude that there is an opportunity to reduce the
transportation costs for an e-tailer by means of a re-etialua
of its real-time fulfilment decisions.. We have developed a
heuristic to do this re-evaluation and shown with prelimjna
testing that it results in better decisions by utilizing mor
resources and on more information.
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