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Appendix

A Proof of Lemma 1

Lemma. In a market with differentiated substitute products, a single product per firm and separate

capacity constraints for each product, colluding firms always sell less quantity of each product than

if they compete freely: dMP ≤ dOP .

Proof. To prove this lemma we first formulate the oligopoly problem (OP) under capacity con-

straints. It can be written as:

max
di

di ·

{
p̄i − ( Bi ) ·

(
di

dOP
−i

)}
s.t. 0 ≤ di ≤ Ci ≤ d̄i

where Bi denotes the row of matrix B corresponding to firm i.

Using notation Γ = diag(B), the corresponding (OP) KKT conditions are:

p̄−BdOP − ΓdOP − λOP + µOP = 0


λOP
i (Ci − dOP

i ) = 0

λOP
i ≥ 0

dOP
i ≤ Ci ≤ d̄i


µOP
i dOP

i = 0

µOP
i ≥ 0

dOP
i ≥ 0

Similarly, we write down the monopoly problem (MP) under capacity constraints.

max
d

d · {p̄−B · d}

s.t. 0 ≤ d ≤ C ≤ d̄

The corresponding (MP) KKT conditions are:

p̄− 2BdMP − λMP + µMP = 0


(λMP )T (C− dMP ) = 0

λMP ≥ 0

dMP ≤ C ≤ d̄


(µMP )TdMP = 0

µMP ≥ 0

dMP ≥ 0

Step 1: We will prove that µOP = 0

Let us consider the problem that ignores the constraint dOP ≥ 0. This suggests we ignore µOP and

the KKT conditions of problem (OP) become:

p̄− (B + Γ)dOP − λOP = 0 or dOP = (B + Γ)−1(p̄− λOP )



with B + Γ being an inverse M-Matrix (see [1]).

There are two cases to distinguish.

• Either λOP
j > 0, in which case: dOP

j = Cj > 0

• Or λOP
j = 0,

dOP
j = (B + Γ)−1

j (p̄− λOP )

= (− · · · − +︸︷︷︸
jj

− · · ·−)


p̄1 − λOP

1

p̄j

p̄n − λOP
n

 ≥ (− · · · −+− · · ·−) p̄

dOP
j ≥ (B + Γ)−1

j B d̄ = (I + MΓ)−1
j d̄ > 0

Since M is an M-matrix, so is I+MΓ (see [1]). Hence (I+MΓ)−1 has non-negative elements,

and the last inequality follows from d̄ > 0.

Hence, it is always the case that dOP ≥ 0 even without including this constraint (i.e. the constraint

that dOP ≥ 0). As a result, µOP = 0.

Step 2: Similarly, we now show that µMP = 0

Following a similar thought process as before, we first consider the problem that ignores µMP (that

is, ignores the constraint dMP ≥ 0). Then the KKT conditions of problem (MP) become:

p̄− 2B dMP − λMP = 0 or dMP = 1/2 M(p̄− λMP )

• Either λMP
j > 0, in which case: dMP

j = Cj > 0

• Or λMP
j = 0,

dMP
j = 1/2 Mj (p̄− λMP )

= (− · · · − +︸︷︷︸
jj

− · · ·−)


p̄1 − λMP

1

p̄j

p̄n − λMP
n

 ≥ 1/2 Mj p̄

dMP
j ≥ 1/2 d̄j > 0 (1)

Step 3: Characterization of dOP

Let K1 = {Set of active constraints for the oligopoly problem} = {i = 1, . . . , n, λOP
i > 0}. We

denote by Kc
1 the complement set of K1 and by HAB and uA the restrictions of matrix H and



vector u to rows indexed by A and columns indexed by B. Since K1 is the set of active capacity

constraints for problem (OP), dOP =

(
dOP
K1

dOP
Kc

1

)
=

(
cK1

dOP
Kc

1

)
.

Since µOP = 0, the oligopoly KKT conditions become:

p̄− (B + Γ)dOP − λOP = 0

Restricting attention to the set Kc
1 of inactive constraints (λOP

Kc
1

= 0) and noting that Γ disappears

in off-diagonal block matrices:

p̄Kc
1
− BKc

1K1 cK1 − (B + Γ)Kc
1K

c
1
dOP
Kc

1
= 0

Using the relation p̄Kc
1

= BKc
1

d̄, we get:

(B + Γ)Kc
1K

c
1
dOP
Kc

1
= BKc

1K1 d̄K1 + BKc
1K

c
1

d̄Kc
1
− BKc

1K1 cK1

⇒ (B + Γ)Kc
1K

c
1
dOP
Kc

1
= BKc

1K1(d̄K1 − cK1) + BKc
1K

c
1

d̄Kc
1

(2)

Clearly, on K1 we have: dOP
K1

= cK1 ≥ dMP
K1

. Hence, to prove the lemma above, we only need to

show: dOP
Kc

1
≥ dMP

Kc
1

.

Step 4: Characterization of dMP

Let K2 = {Set of active constraints for the monopoly problem} = {i = 1, . . . , n, λMP
i > 0}. We

denote by Kc
2 the complement set of K2. Since K2 is the set of active capacity constraints for

problem (MP), dMP =

(
cK2

dMP
Kc

2

)
.

Since µMP = 0, the monopoly KKT conditions become:

p̄− 2 B dMP − λMP = 0

Restricting attention to the set Kc
2 of inactive constraints (λMP

Kc
2

= 0):

p̄Kc
2
− 2 BKc

2
dMP = 0 (3)

Without loss of generality, we now assume K2 ⊆ K1 (and hence Kc
2 ⊇ Kc

1). If there were con-

straints in K2 \K1, we simply remove them. We show that without these constraints dMP
Kc

1
≤ dOP

Kc
1

which proves that capacity constraints cannot be active on dMP
Kc

1
as they are not active on dOP

Kc
1
.



Restricting further (3) to Kc
1 (⊆ Kc

2) and splitting variables according to K1 | Kc
1, we get:

p̄Kc
1
− 2 BKc

1K1

(
cK2

dMP

K1\K2

)
− 2 BKc

1K
c
1
dMP
Kc

1
= 0

Using the relation p̄Kc
1

= BKc
1

d̄, we get:

2 BKc
1K

c
1
dMP
Kc

1
= BKc

1K1 d̄K1 + BKc
1K

c
1

d̄Kc
1
− 2 BKc

1K1

(
cK2

dMP

K1\K2

)

⇒ 2 BKc
1K

c
1
dMP
Kc

1
= BKc

1K1

(
d̄K1 −

2 cK2

2 dMP

K1\K2

)
+ BKc

1K
c
1

d̄Kc
1

(4)

Step 5: dOP ≥ dMP

As shown in (1), for all j ∈ Kc
2, dMP

j ≥ 1/2 d̄j . In particurlar:

2 dMP

K1\K2
≥ d̄K1\K2

≥ cK1\K2
(5)

2 dMP
Kc

1
≥ d̄Kc

1
(6)

On the other hand, combining (2) and (4), we have:

(B + Γ)Kc
1K

c
1
dOP
Kc

1
−BKc

1K1(d̄K1 − cK1) = 2 BKc
1K

c
1
dMP
Kc

1
−BKc

1K1

(
d̄K1 −

2 cK2

2 dMP

K1\K2

)

⇒ (B + Γ)Kc
1K

c
1
dOP
Kc

1
= 2 BKc

1K
c
1
dMP
Kc

1
+ BKc

1K1

(
2 cK2

2 dMP

K1\K2

−
cK2

cK1\K2

)
≥ 0 using (5)

⇒ (B + Γ)Kc
1K

c
1
dOP
Kc

1
≥ 2 BKc

1K
c
1
dMP
Kc

1
(7)

Finally, let’s assume there exist i ∈ Kc
1 such that dOP

i < dMP
i . Denoting {s1, · · · , sf} the indices of

Kc
1, let’s expand the i-th row of (7):

(bis1 · · · 0 · · · bisf ) dOP
Kc

1︸︷︷︸
≤ d̄Kc

1

+ 2 bii dOP
i︸︷︷︸

< dMP
i

≥ ( bis1 · · · 0 · · · bisf ) 2 dMP
Kc

1︸ ︷︷ ︸
≥ d̄Kc

1

using (6)

+ 2 bii d
MP
i

Since all the coefficients bij are non-negative, this is a contradiction.

We just showed that dMP
Kc

1
≤ dOP

Kc
1
, leading to dMP ≤ dOP .



B Proof of Step 1 for Theorem 3

Ignoring µSP , the KKT conditions of problem (SP) become:

p̄−B dSP − λSP = 0 or dSP = M (p̄− λSP )

• Either λSP
j > 0, in which case: dSP

j = Cj > 0

• Or λSP
j = 0,

dSP
j = Mj (p̄− λSP )

= (− · · · − +︸︷︷︸
jj

− · · ·−)


p̄1 − λSP

1

p̄j

p̄n − λSP
n

 ≥Mj p̄

dSP
j ≥ d̄j > 0

C Calculations for Theorem 4

In the uniform case, matrix M can be written as:

M =


1 −α . . . −α

−α . . .
...

...
. . . −α

−α . . . −α 1

 = (1 + α)I − αH

= ∆


1 + α− nα 0 . . . 0

0 1 + α
...

...
. . . 0

0 . . . 0 1 + α

∆T

Inverting M, we get matrix B:

B =
1

1 + α
(I − α

1 + α
H)−1

=
1

1 + α

[
I +

α

1 + α
(1 +

α

1 + α
n+ · · · )H

]
=

1

1 + α

[
I +

α

1 + α− nα
H

]
This allows us to compute:

Γ = diag(B) =
1 + 2 α− nα

(1 + α)(1 + α− nα)
I



On the other hand, diagonalizing B as we did with M:

B = ∆


1

1+α−nα 0 . . . 0

0 1
1+α

...
...

. . . 0

0 . . . 0 1
1+α

∆T

We are now able to compute the diverse component of the surplus ratio.

I + MΓ = ∆


2+3α−nα

1+α 0 . . . 0

0 2+3α−2nα
1+α−nα

...
...

. . . 0

0 . . . 0 2+3α−2nα
1+α−nα

∆T

(I + MΓ)−1 = ∆


1+α

2+3α−nα 0 . . . 0

0 1+α−nα
2+3α−2nα

...
...

. . . 0

0 . . . 0 1+α−nα
2+3α−2nα

∆T

Let’s call d̆ the vector whose components are the eigenvectors of M, and [ρ̆1, ρ̆2] the two eigenvalues

of: (I + ΓM)−1 Γ (I + MΓ)−1.

• ρ̆1 = (1+α)(1+2α−nα)
(2+3α−nα)2(1+α−nα)

• ρ̆2 = (1+α−nα)(1+2α−nα)
(2+3α−2nα)2(1+α)

The ratio of profits becomes:

Π(OP )

Π(MP )
=

4 (ρ̆1d̆
2
1 + ρ̆2

∑n
i=2 d̆

2
i )

1
1+α−nα d̆

2
1 + 1

1+α

∑n
i=2 d̆

2
i

D Proof of Lemma 1

Lemma. For a symmetric inverse M-matrix B and a vector d with all component positive, the

following inequality holds:

‖d‖2B ≤ (1 + r · (nm− 1)) ‖d‖2BBdiag

where r is the market power.

Proof. Since B is an inverse M-matrix, Ostrowski shows in [3] that:

Bkl
ij ≤ rklB

ij
ij and Bkl

ij = Bij
kl ≤ rijB

kl
kl



Introducing r = maxkl rkl, we have: Bkl
ij ≤ r

√
Bij
ijB

kl
kl .

Hence, we can write:

‖d‖2B ≤ dT


B11

11 . . . r
√
Bij
ijB

kl
kl

...
. . .

...

r
√
Bij
ijB

kl
kl . . . Bnm

nm

d

= dT


rB11

11 . . . r
√
Bij
ijB

kl
kl

...
. . .

...

r
√
Bij
ijB

kl
kl . . . rBnm

nm

d + dT


(1− r)B11

11 . . . 0
...

. . .
...

0 . . . (1− r)Bnm
nm

d

We denote the diagonal matrix corresponding to the diagonal of matrix B by:

Γ = diag(B11
11 , · · · , Bnm

nm)

We obtain:

‖d‖2B ≤ r dT
√

Γ


1 . . . 1
...

. . .
...

1 . . . 1

√Γ d + (1− r) dTΓd

Since H =


1 . . . 1
...

. . .
...

1 . . . 1

 has two eigenvalues 0 and nm, we have dTHd ≤ nm ‖d‖2 for all d.

‖d‖2B ≤ r · nm dTΓd + (1− r) dTΓd

≤ (1 + r · (nm− 1)) ‖d‖2BBdiag

E Derivation of oligopoly variational inequality

At a Nash equilibrium solution, the optimization problem facing a single firm is:

max
di

di ·

p̄i −


Bi1

...

Bim

 ·
(

di

dOP
−i

)
s.t. di ∈ Ki

(8)



This problem is a maximization of a concave objective function over a convex set, it is a convex

problem. A general convex problem of the form:

max
x

F (x)

s.t. x ∈ K

with a concave objective F (x) is equivalent (see [2], [4]) to the variational inequality problem:

Find x0 ∈ K : −∇F (x0) (x− x0) ≥ 0 ∀x ∈ K

Applying this to (8), we obtain for each firm i:

Find dOP
i ∈ Ki :

{
−p̄i + Bi · dOP + Bi

i · dOP
i

}T
(di − dOP

i ) ≥ 0 ∀di ∈ Ki

where Bi denotes the rows of matrix B corresponding to firm i.

Now, since the constraint set of each firm i is independent of the quantities chosen by other

firms, it is equivalent to satisfy every one of these variational inequalitites (for firm i) or to satisfy

the sum of these inequalities. Clearly, if dOP satisfies all these inequalities it satisfies the sum

of the inequalities. On the other hand if dOP satisfies the sum of the inequalities, by choosing

d = (di,d
OP
−i ) for all di ∈ Ki, it is easy to check that it will satisfy every variational inequality

separately as well. The sum of these inequalities is exactly the variational inequality used in this

paper:

Find dOP ∈ K :
{
−p̄ + B · dOP + BBdiag · dOP

}T
(d− dOP ) ≥ 0 ∀d ∈ K
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